
Bogor/Kiasan: A k-bounded Symbolic Execution for
Checking Strong Heap Properties of Open Systems∗

Xianghua Deng
Kansas State University
deng@cis.ksu.edu

Jooyong Lee
BRICS, University of Aarhus

jlee@brics.dk

Robby
Kansas State University
robby@cis.ksu.edu

Abstract

This paper presents Kiasan, a bounded technique to rea-
son about open systems based on a path sensitive, rela-
tively sound and complete symbolic execution instead of
the usual compositional reasoning through weakest pre-
condition calculation that summarizes all execution paths.
Kiasan is able to check strong heap properties, and it is
fully automatic and flexible in terms of its cost and the
guarantees it provides. It allows a user-adjustable mixed
compositional/non-compositional reasoning and naturally
produces error traces as fault evidence. We implemented
Kiasan using the Bogor model checking framework and ob-
served that its performance is comparable to ESC/Java on
similar scales of problems and behavioral coverage, while
providing the ability to check much stronger specifications.

1 Introduction

Best practices in software development techniques
nowadays heavily emphasize the development of reusable
and modular software, which allows software components
to be developed and maintained independently. In addi-
tion, many modern programming languages provide lan-
guage constructs at higher abstraction levels to help man-
age software complexity. For example, object-oriented pro-
gramming languages have gained popularity over the re-
cent years as they support the development of software
components. While they have improved software devel-
opment processes employed today, a set of unique chal-
lenges have emerged for assuring their quality. One of the
main challenges is to ensure software compatibility across
independently-developed components. Although design-
by-contract [18] offers a promising solution, there is still
a need for effective analysis techniques that are able to rea-

∗This work was supported in part by a 2005 IBM Eclipse Innovation
Grants, by Lockheed Martin, by the Air Force Office of Scientific Re-
search, by the U.S. Army Research Office (DAAD190110564), and by
the National Science Foundation (CCR-0306607, CCF-0429149, CCF-
04444167).

son about software contracts and their implementation us-
ing modern programming languages in the context of open
systems (i.e., where portions of the system are unavailable
and only their specifications exist.)

We present Kiasan (kē’ ah sahn, Indonesian for reason-
ing with analogy/symbolically), a technique for reasoning
about behavioral properties of open (sequential) systems,
including strong heap properties that describe heap struc-
tures and the data in them. Our approach is driven by a
number of design goals that distinguish it in one or more
ways from existing work (e.g., [8, 2, 9, 4]):

G1. Provides fully automated analysis: To gain wide-spread
adoption from software developers, it is crucial for analysis
tools to require no manual intervention.

G2. Handles rich heap-oriented specifications: Software
written with newer programming languages such as Java
and C# heavily use dynamically-allocated heap objects. It
is imperative for an analysis tool to be able to reason about
these objects, their data, and their relationships (e.g., [20].)

G3. Allows mixed compositional and non-compositional
analysis: While pure compositional reasoning is more scal-
able, one of its usability problems is that it requires an up-
front effort for having comprehensive specifications. In the
case where an implementation exists or where it is easier
to implement than to specify, we should allow one to easily
configure the analysis to use the implementation. This al-
lows one to focus on checking the more important parts of
the system without undesirable warning or error messages
as is the case when using a pure compositional reasoning
approach with incomplete/nonexistent specification.

G4. Flexibility to adjust analysis cost and coverage: We
believe that an analysis tool should provide enough control
over the computational resources an analysis requires, and
it should provide quantifiable behavior coverage guarantees.
These allow users to increasingly allocate more resources to
gain higher levels of confidence from the tool. For example,
when assuring correctness of a method which sorts a list, it
is of little help to use techniques such as iterative deepening
in depth-first state-space exploration (e.g., [11, 22]), since
the link between a program and a suitable analysis depth is

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

very difficult to see. Rather, one should be able to specify
ones willingness to invest the resources necessary to obtain
correctness assurance on lists up to a certain size.
G5. Provides helpful analysis feedback: In contrast to errors
caused by uncaught exceptions such as null-dereference, it
is not enough to only point out at a program point for viola-
tions of strong contracts. When the analysis finds an error,
it should give helpful feedback that explains it, and at the
very least, generate an error scenario as evidence.

We believe the key contribution of our approach is a
collection of insightful design and engineering decisions
that lead to an effective tool that hits a “sweet spot” with
respect to the capabilities that software developers would
need in practice. Specifically, we believe that the scala-
bility of our technique compares well to frameworks like
ESC/Java [8], while providing better support for checking
strong heap properties. Our work takes the symbolic execu-
tion presented in [11] and adds several important enhance-
ments that allow it to achieve the design goals above: (1)
we develop a bounding technique that provides better con-
trol appropriate for checking heap properties; we identify
and address sources of unsoundness or intractability in [11],
(2) we introduce a more efficient lazy initialization algo-
rithm compared to [11], (3) we formalize Kiasan’s basic
symbolic execution engine and prove its simulation relation
to concrete execution and its relative soundness and com-
pleteness (available at [26]), (4) we show how Kiasan can
be used to reason about strong heap properties of open sys-
tems in a mixed compositional/non-compositional way, (5)
we present how Kiasan can leverage heap region properties
to reduce its analysis cost as well as enabling it to check
heap-oriented properties, (6) we implement Kiasan on top
of the Bogor software model checking framework [19, 26],
and (7) we demonstrate how Bogor/Kiasan can check prop-
erties difficult to handle automatically using other methods.

In our paper, we use a specification language with fea-
tures similar to the Java Modeling Language (JML) [15],
but we did not design our approach around a particular spec-
ification language. Instead, we require a side-effect free
specification that is transformable to an effective executable
form. While there is a lot of technical and engineering ef-
fort for transforming specification to an executable form, it
is beyond the scope of this paper. Existing methods such
as jmlc for JML runtime monitoring [6] can be employed
to transform specification into an executable form. In ad-
dition, we also use some relational properties on methods
such as transitivity.

The next section presents an example that motivates our
approach. Section 3 presents our k-bounded symbolic exe-
cution approach, and Section 4 outlines how we adapt sym-
bolic execution for reasoning about open systems and how
we leverage heap region information to reduce analysis cost.
Section 5 discusses our prototype and experiments. Sec-
tion 6 presents related work, and Section 7 concludes.

public class L inkedL is t<E> {
/ /@ inv : i s A c y c l i c () ;
@NonNull LinkedNode head = new LinkedNode () ;

/∗@ pre : isSo r ted (c)
@ && othe r . i sSo r ted (c) ;
@ post : i sSo r ted (c) ; @∗ /

void merge (@NonNull L inkedL is t<E> other ,
@NonNull Comparator<E> c) {

L inkedL is t<E> l l = new L inkedL is t<E> () ;
LinkedNode n1 = th is . head . next ;
LinkedNode n2 = o the r . head . next ;
while (n1 != nul l && n2 != nul l)

i f (c . compare (n1 . data , n2 . data) < 0)
{ l l . addLast (n1 . data) ; n1 = n1 . next ; }

else { l l . addLast (n2 . data) ; n2 = n2 . next ; }
while (n1 != nul l)
{ l l . addLast (n1 . data) ; n1 = n1 . next ; }

while (n2 != nul l)
{ l l . addLast (n2 . data) ; n2 = n2 . next ; }

head = l l . head ;
}
class LinkedNode { E data ; LinkedNode next ; }

}
Figure 1. A Merge Example (excerpts)

2 Motivating Example

Figure 1 presents a sorted list merge example that mo-
tivates our approach. Intuitively, the merge method’s con-
tract indicates that given a non-null and sorted (from the
preconditions @NonNull and pre) acyclic list (from the in-
variant inv) with respect to the specified Comparator c,
the method merges the content of that list into the receiver
list object (given that it is also sorted) and as the result,
the receiver object is also a sorted acyclic list (isAcyclic
and isSorted are pure, i.e., they do not modify existing
objects). We highlight several non-trivial challenges when
reasoning about such programs and specifications that we
address in the next sections.

1. The compare method is open-ended, i.e., in contrast to
reasoning about a complete system such as [11] where we
know the actual objects and the data being manipulated, we
do not know the actual implementation of the method (or
even if there is an implementation for the type that will sub-
stitute E). Thus, the objects used to determine its result are
unknown as it may use all data that it can reach. This is
also in contrast to reasoning about specific algorithms on
data structures whose elements are of scalar types or Java’s
immutable objects [16, 25, 12, 1], for example, for order-
ing, where we know the comparison does not use data from
other heap objects. Thus, the strongest specification we can
have is that the compare method is pure, and it returns ei-
ther a negative integer, zero, or a positive integer. Moreover,
compare is a total order relation, as specified in the Java 5
Application Programming Interface (API) documentation.

2. In contrast to compare, an implementation of the
addLast method is easily understood, i.e., it only modifies
the last node’s next field of the receiver list object by as-
signing its parameter to it; it is actually easier to use the
actual implementation than its specification, i.e., one can
focus on checking merge first by using an implementation

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

of addLast. Thus, it avoids one of the usability problems
when using pure compositional reasoning techniques such
as [8] that require comprehensive specifications up-front be-
fore being able to check them; otherwise, it generates unde-
sirable error or warning messages.
3. We would like to strengthen post to ensure that the re-
sulting list size is the sum of the receiver list size before
merging and the size of other, and all the elements are
from the two lists. In contrast to techniques that mostly con-
cern about heap shapes [16], these kinds of properties make
it hard to automatically use heap abstraction techniques that
summarize objects because one still has to maintain the el-
ements (whose numbers may be unbounded.)
4. We have to establish that whatever information used for
comparison must not be modified by merge (or methods
called from it) to ensure the comparisons done later in post
are unaffected. (This is a bit too strong as it is fine to modify
any information that will be accessed by compare if it does
not change compare’s result; we only consider the former
case in this paper.) Otherwise, there is no guarantee that
the receiver object is sorted afterward. For example, sup-
pose that we insert a code just before the end of merge. We
need to check whether the inserted code invalidates the ele-
ments’ ordering. This can be detected by using heap region
separation. That is, the inserted code cannot invalidate the
ordering if it does not modify the element objects. How-
ever, establishing this requires a precise heap analysis that
is able to leverage, for example, heap region information.

3 k-Bounded Symbolic Execution

In this section, we describe our basic (non-
compositional) and stateless symbolic execution technique
that improves [11] by introducing an intuitive bounding
technique, as well as techniques to improve its performance
and to address its sources of unsoundness or intractability.

Background: Symbolic execution[13] is a technique that
essentially interprets a program. However, it uses symbolic
values instead of concrete values (e.g., integers.) While ex-
ecuting a program, it maintains the relationship of the sym-
bolic values as path conditions. For example, consider the
following code: z = x + y; if (z > 0) z++;
Suppose the values of x and y in the beginning are α and
β, respectively. After executing the assignment, we know
that the value of z is γ, where γ = α + β, i.e., we add the
additional knowledge to the path conditions. When evalu-
ating the branch condition, we do not have enough infor-
mation to decide which branch to follow, thus, we non-
deterministically follow both branches to safely simulate
possible real executions. When following the false branch,
we know that at the end, ¬(γ > 0), and we have finished
executing the code. On the other hand, in the true branch,
we know that γ > 0. At the end, z’s value is γ′, where
γ′ = γ + 1. Each of these execution paths characterizes

(theoretically) an infinite number of real executions.
For objects and arrays, we use the lazy initialization al-

gorithm in [11] that initializes field values on an on-demand
basis. If a field is accessed for the first time, then its value
is “initialized lazily” as follows. If the field’s type is a
primitive type, then a new symbolic value is created. Oth-
erwise, the algorithm covers all possible aliases by non-
deterministically choosing the null value, any existing sym-
bolic object in the heap whose type is compatible with the
field’s type, or a fresh symbolic object. Arrays present ad-
ditional challenges, i.e., the length of an array may be un-
known. In addition, arrays can be accessed by a symbolic
(unknown) integer index. We treat array similar to [1], but
with bounding the number of lazy initializations on array
elements. We refer the reader to [11, 1] for more detailed
discussions on lazy initialization of objects and arrays.

Issues in Symbolic Execution: The symbolic execution
described above is quite effective (e.g., it has precise alias
information), automatic, and naturally able to produce
counter-examples as error evidence, i.e., it is in-line with
G1, G2, and G5. However, it can become unsurprisingly
expensive. The inherent non-determinism in the lazy ini-
tialization algorithm becomes more expensive as the num-
ber of symbolic objects grows. Another challenging issue is
handling possible non-termination due to loops (and recur-
sions.) Even using a stateful search does not help due to the
unboundedness of heap. For example, symbolic execution
of a non-terminating loop that adds concrete objects to a
linked list does not terminate gracefully. (Abstraction tech-
niques [16, 1] can be employed to summarize some heap
structures; while promising, it is still difficult to automat-
ically construct precise abstractions for every strong prop-
erty.) A common approach to address this (e.g., [11, 9]) is
to use a depth-bounded search which provides control over
the control flows under consideration, but it provides little
control over data structures. That is, it is hard to quantify
the behavioral coverage that is guaranteed by such method
as mentioned previously in Section 1. Thus, it conflicts
with G4. Another approach is to exploit loop invariants
(e.g., [11]); however, automatically inferring loop invariants
is incomplete in general. Thus, it conflicts with G1.
k-bounding: To address the above issues, we incorporate
a bounding technique to help manage symbolic execution’s
complexity. That is, we bound the sequence of lazy ini-
tializations originating from each initial symbolic object up
to k. In other words, we bound the length of reference
chains on symbolic objects. (We should only count initial-
izations done inside loops, but this complicates our presen-
tation.) For arrays, we additionally bound the number of
lazy initializations on distinct array indices up to k. This
user-adjustable bounding provides a fair trade-off between
analysis cost and behavioral coverage; we can quantify the
amount of coverage on heap objects for a given bound, thus
satisfying G4. That is, when using a bound k, the analy-

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

n

NULL

LinkedList

LinkedNode

(a) Lazy Initialization

LinkedNode

LinkedList NULL

n c

(b) Lazier Initialization (c) Lazy Execution Tree (d) Lazier Execution Tree

Figure 2. Lazy and Lazier Initializations

sis can guarantee the correctness of a program on any heap
object configuration (satisfying its contract) with reference
chains whose lengths are at most k. In the case where the
analysis does not exhaust k, a complete behavior coverage
is guaranteed. Note that this is different from the bounding
techniques used in, for example, Korat [5] where it bounds
the number of objects of each type. (Mixed bounding tech-
niques are possible, however, we only use k-bounding to
keep our presentation simple.) Due to the nature of lazy ini-
tialization, the expanded objects are only the ones that are
needed or accessed.

To handle diverging loops, we limit the number of loop
iterations that do not (lazily) initialize any heap object, i.e.,
we prefer exhausting the k resource-bound first before re-
sorting to loop bounding to try to guarantee the advertised
heap object configuration coverage.

Lazier Initialization: During our initial experiments with
lazy initialization, we observed a large number of paths gen-
erated by its inherent non-determinism that do not really
contribute to different errors. The essence of the lazy initial-
ization algorithm is delaying the initialization of a field f of
a symbolic object o until o. f is accessed the first time. We
observed that it is possible to delay the initialization even
further until o. f (for non-primitive field f) is used in field
accesses (e.g., o. f .g), equality tests (e.g., o. f =o′), and as
receiver objects for method calls. Hence, we abstract lazy
initialization into lazier initialization as follows: a field ac-
cess o. f only returns a symbolic reference; later usages of
o. f (e.g., o. f .g) will initialize o. f by choosing from com-
patible existing heap objects or a fresh symbolic object.

Figures 2(a,b) illustrate the difference between lazy
and lazier initializations. (Dashed lines represent non-
deterministic choices, and dotted lines represent possible
future non-deterministic choices; the state before initial-
ization is the state without dashed or dotted lines.) In (a),
when n.next is lazily initialized, we non-deterministically
choose between null, the first three nodes, or a fresh sym-
bolic node (it does not choose the list object because of type
incompatibility), thus, the symbolic execution branches on
five paths. On the other hand, the lazier initialization in (b)
creates a symbolic reference (represented as a cloud c) and
branches two-ways. Only if the actual value of c is used
(e.g., for field access), then the cloud is dissolved into a
non-deterministic choice among existing symbolic objects
and a new symbolic object. Thus, it delays the branching

until it is actually needed. In (b), we indicate the possi-
ble objects for the future non-deterministic choice when the
cloud is dissolved; however, this object collection repre-
sent a subset of the future non-deterministic choice. The
actual set of objects will be computed at the time when
the cloud is dissolved, which may include more objects.
This is crucial for proving the soundness of lazier initial-
ization. Figures 2(c,d) demonstrate the effect of delaying
non-deterministic choices in lazier initialization (i.e., delay-
ing branchings in state-space exploration.) The state-space
tree in (d) has fewer transitions than (c) because it does its
non-deterministic choice a bit later. Thus, it is more efficient
to explore the state-space in (d). The lazier initialization al-
gorithm is even more efficient in the case where a symbolic
reference is never dissolved.

Formalization: Figure 3 presents the formalization of
our k-bounded symbolic execution described above; formal
simulation proof as well as relative soundness and com-
pleteness proofs of our symbolic execution can be found
at [26]. We distinguish two kinds of symbols: primitive
symbol (non-object symbols such as symbolic integers),
and object (and array) symbols. Each symbol αm,n

τ has three
attributes: the type τ of the symbol, the object field or array
element initialization bound m, and the number of array el-
ements bound n. (We will discuss the difference between m
and n for arrays near end of this section.) Note that we will
often omit attributes when they are unnecessary. αm,n

τ is a
partial function from Indices to Values: empty mapping for
a primitive value and total function (with respect to its ac-
tual fields) for a concrete (real/non-symbolic) object. Each
symbolic reference (i.e., an element of SymLocs), which
represents a non-null unknown reference for lazier initial-
ization, also has the three attributes. Without loss of gen-
erality, we represent a state as a tuple of global variables, a
program counter, locals, a stack, a heap, and a conjunctive-
set of path conditions (boolean formulas) φ. Transition con-
figurations are expressed as the form of s1 �S instr ⇒ s2.
This derives a configuration s2 �S instr′ ⇒ s3, where instr′
is the instruction located at the pc of s2, if it exists. Other-
wise, we assume the execution terminates. Reaching an er-
ror state stops the execution in the current path and produces
an error trace. We also assume the loop bounding discussed
earlier is done orthogonally. Moreover, we stop exploring
paths whose state’s path condition is unsatisfiable.

Arithmetic operations and branch instructions are per-

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

Semantic Domains

INT ∈ Typesprim = primitive types: int,char,float,etc.
Typesnon−prim = Typesrecord � Typesarray � SymTypes

τ ∈ Types = Typesprim � Typesnon−prim
pc ∈ PCs = the set of program counters
φ ∈ Φ = P(the set of boolean expressions)
i, j ∈ Locs = the set of locations
δm,nτ ∈ SymLocs = the set of symbolic locations
m, n, k ∈ � = the set of natural numbers
null, c, d ∈ Consts = the set of constants including �
len, def, conc, fτ ∈ Fields = the set of fields

v ∈ Values = Consts ∪ Locs ∪ Symbolsprim ∪ SymLocs
ι ∈ Indices = Fields ∪� ∪ Symbolsint
αm,n
τ , β, γ ∈ Symbols =

{
αm,n
τ | αm,n

τ : Indices⇀ Values
}

= Symbolsprim � Symbolsnon−prim
g ∈ Globals = { g | g : Fields⇀ Values }
σ ∈ Stacks =

{
σ | σ is a sequence of values

}

l ∈ Locals = { l | l : �⇀ Values }
h ∈ Heaps =

{
h | h : Locs⇀ Symbolsnon−prim

}

s ∈ States = Globals × PCs × Locals × Stacks × Heaps × Φ

Auxiliary Functions (↓ = defined, ↑ = undefined)
default = λτ.v,where v is τ’s default value
fields = λτ.{ fτ′ | fτ′ is a field in τ}
τ′ <: τ = τ′ is a subtype of τ (reflexive)
acc-idx = λα.

{
k ∈ � ∪ Symbolsint | α(k)↓ }

collect = λh. { i | h(i) = α ∧ α(conc) ↑ }

symbols = λs.
{
α | α appears in s

}

new-prim-sym = λ(τ, ps).ατ, α � ps
new-sym-type = λps.τ s.t. τ ∈ SymTypes ∧ τ does not appear in ps
array-type = λτ.τ′,where τ′ is a array type of element type τ
subst = λ(s, δ, i).s′, s′ is the resulting state of substituting δ with i in s.

new-sym = λ(ps,m, n).αm,n
τ , s.t. α � ps ∧ τ = new-sym-type(ps) ∧ ∀ι ∈ Indices.α(ι)↑

new-sarr = λ(ps,m, n).new-sym(ps ∪ {α},m, n)[len → α] where α = new-prim-sym(int, ps)
new-obj = λ(ps, τ).α0,0

τ , s.t. α � ps ∧ ∀ fτ′ ∈ fields(τ).α(fτ′) = default(τ′)
new-arr = λ(ps, τ, v, n).α0,n

τ′ , α � ps ∧ τ′ = array-type(τ) ∧ domα = {def, len, conc} ∧ α(def) = default(τ) ∧ α(len) = v
init-loc = λ((g, pc, l, σ, h, φ), δm,nτ).{subst((g, pc, l, σ, h′ , φ′), δ, i) | i ∈ collect(h), h′ = h, φ′ = φ ∪ {τ′ <: τ} where h(i) = ατ′ ;

i � dom h, h′ = h[i → γm,n
τ′], φ′ = φ ∪ {τ′ <: τ} if τ ∈ Typesrecord ∧ m ≥ 0

where γτ′ = new-sym(symbols(g, pc, l, σ, h, φ),m, n); (the array case is similar)}
Transitions (Non-deterministic, k-Bounded): s �S instr ⇒ s1[stmt1] | . . . | sn[stmtn] | exception, s0[stmt0]

(g, pc, l, α ::c ::σ, h, φ) �S iadd⇒ (g, nxt(pc), l, β ::σ, h, φ ∪ {β = c + α}) where β = new-prim-sym(int, symbols(g, pc, l, α ::c ::σ, h, φ))
(g, pc, l, α ::c ::σ, h, φ) �S if icmplt pc′ ⇒ (g, nxt(pc), l, σ, h, φ ∪ {c ≮ α}) | (g, pc′ , l, σ, h, φ ∪ {c < α})
(g, pc, l, i ::σ, h, φ) �S getfield fτ ⇒ (g, nxt(pc), l, v ::σ, h, φ) where v = βm,n(fτ), βm,n = h(i) if βm,n(fτ)↓;

(g, nxt(pc), l, v ::σ, h[i → βm,n[fτ → v]], φ) when βm,n = h(i),
v = new-prim-sym(symbols(g, pc, l, i ::σ, h, φ), τ) if βm,n(fτ)↑ ∧τ ∈ Typesprim;
v = null, if βm,n(fτ)↑ ∧τ ∈ Typesnon−prim;
v = δm−1,k

τ , where δ is fresh if βm,n(fτ)↑ ∧τ ∈ Typesnon−prim;
(g, pc, l, δm,nτ ::σ, h, φ) �S getfield fτ ⇒ s′ where s′ ∈ init-loc((g, pc, l, δm,nτ ::σ, h, φ), δ)
(g, pc, l, v :: i ::σ, h, φ) �S putfield fτ ⇒ (g, nxt(pc), l, σ, h[i → γ[f → v]], φ) where γ = h(i)
(g, pc, l, v ::δm,n

τ′ ::σ, h, φ) �S putfield fτ ⇒ s′ where s′ ∈ init-loc((g, pc, l, v ::δm,n
τ′ ::σ, h, φ), δ)

(g, pc, l,m ::σ, h, φ) �S anewarray τ⇒ (g, nxt(pc), l, i ::σ, h[i → new-arr(symbols(g, pc, l,m ::σ, h, φ), τ,m,m)], φ) where i � dom h
(g, pc, l, α ::σ, h, φ) �S anewarray τ⇒ (g, nxt(pc), l, i ::σ, h[i → new-arr(symbols(g, pc, l, α ::σ, h, φ), τ, α, k)], φ ∪ {α ≥ 0}) where i � dom h

| NegativeArraySizeException, (g, nxt(pc), l, σ, φ ∪ {α < 0})
(g, pc, l, α :: i ::σ, h, φ) �S iaload⇒ ArrayIndexOutOfBoundsException, (g, pc, l, σ, h, φ ∪ {0 < α ∨ α ≥ h(i)(len)})

| (g, nxt(pc), l, β ::σ, h[i → γm,n−1[α → β]], φ ∪ { ι � α | ι ∈ I } ∪ {0 ≤ α, α < γm,n(len), |I| < γm,n(len), n > 0})
where γm,n = h(i), I = acc-idx(γm,n), β =

⎧⎪⎪⎨⎪⎪⎩
γm,n(def) if γm,n(def)↓
new-prim-sym(INT, symbols(g, pc, l, α :: i ::σ, h, φ)) if γm,n(def)↑

|ι∈acc-idx(γ) (g, nxt(pc), l, γ(ι) ::σ, h, φ ∪ {ι = α}) where γ = h(i)
(g, pc, l, α ::null ::σ, h, φ) �S iaload⇒ NullPointerException, (g, pc, l, σ, h, φ)
(g, pc, l, j :: i ::σ, h, φ) �S if acmpeq pc′ ⇒ (g, nxt(pc), l, σ, h, φ) if i � j | (g, pc′ , l, σ, h, φ) if i = j
(g, pc, l, v ::δm,nτ ::σ, h, φ) �S if acmpeq pc′ ⇒ s′ where s′ ∈ init-loc((g, pc, l, v ::δm,nτ ::σ, h, φ), δ)
(g, pc, l, δm,nτ ::v ::σ, h, φ) �S if acmpeq pc′ ⇒ s′ where s′ ∈ init-loc((g, pc, l, δm,nτ ::v ::σ, h, φ), δ)
(g, pc, l, v ::σ, h, φ) �S assume⇒ (g, nxt(pc), l, σ, h, φ ∪ {v})
(g, pc, l, v ::σ, h, φ) �S assert⇒ (g, nxt(pc), l, σ, h, φ ∪ {v}) | Error, (g, pc, l, σ, h, φ ∪ {¬v})

Note: implicit universal quantifications on free variables; mid-bar (|) indicates a non-deterministic choice, and semi-colon (;) indicates different cases

Figure 3. Bytecode-level Symbolic Execution Operational Semantics (excerpts)

formed in the same manner as typical symbolic execu-
tion [13]. However, accesses to symbolic objects (e.g.,
getfield) operate according to the lazier initialization al-
gorithm described previously. Similar to [11], we limit the
choosing range to exclude concrete objects (and arrays) by
introducing an additional field, conc, which is defined for
concrete objects, while undefined for symbolic objects as
shown in the collect function. This eliminates false alarms
in the case where concretely created objects are reachable
through lazy initialization as this only happens after de-
structive updates. For example, consider the following:
LinkedNode bar (@NonNull LinkedNode a) {

LinkedNode n = new LinkedNode () ; / / d e fa u l t c o n s t ru c to r
return a . next ; }

The return value of bar should not include the object o
pointed by n, because o did not exist in the calling con-

text, and there is no assignment in bar that causes o to be
reachable via a. Thus, we need to distinguish between con-
cretely created objects from symbolic objects, and only in-
clude symbolic objects in lazier initialization.

We use bound n on symbol αm,n that limits the num-
ber of distinct array elements that can be lazily initialized;
each symbolic array allows lazy initializations up to n num-
ber of elements. If an array element is accessed through
a symbolic index (e.g., iaload): (1) the index maybe out
of bounds, (2) the index is equal to one of the accessed in-
dices (from the acc-idx function), or (3) n is decremented if
the above does not hold, the number of distinct indices ac-
cessed so far is less than the length of array, and n is greater
than zero. Elements of arrays created by anewarray should
have default values, but we cannot simply assign the default

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

values because the array length maybe unknown. Instead,
we keep a default value for each array on its def field and
lazily initialize an accessed index’s value with it. This sim-
ulates ∀-quantifications over uninitialized array elements.

Another difference between Kiasan with the lazy initial-
ization algorithm presented in [11] is the treatment of types
for symbolic objects. Since a symbolic object with a type
τ really means the object has a type τ′ that is a (reflexive)
subtype of τ (i.e., τ′ <: τ), a field with type τ can be ini-
tialized with any symbolic object of type τ′. [11] can enu-
merate all possible subtypes of τ, i.e., its non-deterministic
choice includes a fresh symbolic object of type τ′, for each
τ′ <: τ. We believe this is intractable (e.g., consider when
τ is java.lang.Object.) For practicality, [11] considers
τ′ = τ, which is unsound. To address this issue, we use
type variables instead of actual types on symbolic objects
and encode the constraints over them in path conditions.

4 Contract-based Symbolic Execution

To reason about open systems (G3), we employ contract-
based reasoning often used in compositional analysis tech-
niques such as ESC/Java [8]. As indicated in Section 1,
when analyzing a method M, we require that M’s contract
is transformable to an executable form similar to [6]. In-
tuitively, when analyzing M, Kiasan assumes M’s effective
pre at the method entry and asserts M’s effective post at
method exits. To achieve this using symbolic execution, Ki-
asan creates a wrapper method for M that: (1) assumes M’s
executable pre, (2) calls M and stores M’s return value (if
any) to a temporary variable x, (3) asserts M’s executable
post (that uses x’s value in place of the return value.) In
essence, executing (1) sets up the symbolic state accord-
ing to M’s pre (e.g., they initialize the heap appropriately),
and states non-conforming to (1) will be ignored. Executing
(3) checks whether the resulting states from (2) satisfy M’s
post (if post cannot be ensured from the path condition,
then an error is raised). Kiasan can check post referring to
prestate’s values (i.e., values at method entry), and JML’s
modifies, assignable, and \fresh similar to [20].

Instead of directly executing method calls from M, Ki-
asan uses contracts in place of the actual implementations
of open-ended methods (user-configurable). Intuitively, if
M calls an open-ended method N, it checks whether N’s
pre is satisfied; an error is raised if that is not the case.
If it is satisfied (or if none is specified), Kiasan uses N’s
post to determine the effects of the method call. To do
this, for each open-ended method N called by M, it creates
a stub for N, and redirects the corresponding method call to
N to call to the stub instead; the stub consists of a sequence
of statements that: (1) asserts N’s pre, (2) removes val-
ues from modified fields stated in N’s contract (hence their
values become undefined), if the modified fields do not re-
fer to fresh objects created in N (as specified in N’s con-
tract using a similar construct such as JML’s \fresh); oth-

reach

reach reach

ρCONC

LinkedNode

E E

ρ1 ρ2

ρ3

this:LinkedList

LinkedNode LinkedNode

other:LinkedList ll:LinkedList

E

Figure 4. A Region Relation Scenario of merge

erwise, fresh symbolic objects are created for such fields,
(3) non-deterministically pushes a symbolic reference or
null in M’s stack for non-primitive return type and sym-
bolic value for primitive return type, and (4) assumes N’s
post. In essence, executing (2) drops information about
fields that are modified by N, and executing (4) initializes
them with values which satisfy N’s post. We can summa-
rize method calls similar to [9]; that is, we cache method
results and their corresponding context; if subsequent calls
use the same context, we use the cached results.

To close the environment, Kiasan creates a driver for M
that starts with a symbolic state where all method parame-
ters and fields that are possibly referenced by M initialized
with primitive symbolic values or symbolic references/null,
according to their types. The analysis proceeds by symbol-
ically executing the driver for M. The subsequent subsec-
tions describe two techniques that improve Kiasan’s perfor-
mance as well as enabling us to check strong heap proper-
ties in the context of analyzing open systems.

Heap Region Versioning: The last challenge mentioned
in Section 2 highlights the need for stronger specification
of how objects relate to each other and the possible com-
putations on them. In the example, we need to know that
the execution of merge does not affect the computation of
compare; we would like to use this knowledge in the sym-
bolic execution to avoid undesirable error messages that
may be generated without such information. One way to
do this is to leverage heap region specification. Consider
the scenario depicted in Figure 4 where each list object is
in its respective region ρ1 and ρ2, this�other, and the list
elements are in a separate region ρ3. It indicates that objects
in ρ3 cannot reach objects in ρ1 and ρ2.

Enhanced with this region specification, the analysis
starts with two fresh symbolic references pointed by this
and other, tagged with ρ1 and ρ2 as their region descrip-
tors, respectively. Freshly created concrete objects are
tagged with a special region ρconc, and the lazier initializa-
tion of a field fρ, that can point to objects from region ρ, can
only choose from null, a fresh symbolic object or existing
symbolic objects in region ρ. This reduces the number of
aliasing cases, thus improving the performance of the anal-
ysis. Furthermore, we associate a version number to each
region that is incremented when any object in the region is
updated. This allows us to detect that subsequent method
calls such as comparewhose context is in the same regions
and versions, return the same result value. That is, we cache

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

1 public class W {
2 MyInt myInt ;
3 void foo (@NonNull W wrapper) {
4 MyInt m = new MyInt () ;
5 i n t tmp = wrapper . myInt . f ;
6 W w = bar (m) ;
7 i f (w. myInt != m) { . . . }
8 }
9 / /@ post : \ r e s u l t . myInt != n u l l ;

10 @Fresh W bar (@NonNull MyInt m) {
11 W w = new W() ; w. myInt = m; return w;
12 }
13 }
14 class MyInt { i n t f = 0 ; }

Figure 5. A Context Versioning Example

the method calls, and return previously computed result val-
ues if there is no change in any of the objects inside the re-
gions reachable from the context. Therefore, we are able
to conclude that merge’s post holds, because compare is
pure, and merge and addLast do not update ρ3’s version.

Context Versioning: Recall that in the symbolic execution
presented in Figure 3, we use the conc field to limit the num-
ber of non-deterministic choices. That is, when the lazier
initialization algorithm chooses existing objects, it only
chooses from heap objects with undefined conc field. This
produces unsoundness in the context of contract-based rea-
soning described earlier. The example in Figure 5 demon-
strates this problem. Suppose we are analyzing the method
foo where we use bar’s specification instead of its imple-
mentation. Since wrapper is a non-null parameter, the anal-
ysis starts with a symbolic object for it. The field access
wrapper.myInt.f at line 5 will make wrapper.myInt
initialized and the choosing range does not include the local
MyInt object created at line 4. This is consistent because
wrapper.myInt at line 5 can only point to any object from
the calling context of foo. For the method invocation at
line 6, contract-based reasoning creates a symbolic object
(because of @Fresh) for the return value of bar and assigns
it to w. After the method call at line 6, w.myInt points to
the object o created at line 4 in real execution. However,
according to the algorithm in Figure 3, the choosing range
unsoundly excludes o because its conc field is defined.

To address this, instead of using one bit flag for conc, we
record context version in object by using an integer value
for conc. Each time a method invocation uses the method’s
specification in place of its implementation, the objects cre-
ated after the invocation have a higher version number than
the objects before that. The generalized algorithm for lazier
initialization then chooses from existing heap objects with
version number less than or equal to that of the object in-
stead of choosing from existing heap objects with undefined
conc field. For example, the parameter wrapper starts with
the context version 0, and the version of the object o pointed
to by m at line 4 is 1. Meanwhile, the returned object from
bar at line 6 has 2 as its context version. Therefore, the
choosing range of w.myInt at line 7 includes the object o
pointed to by m because 1 ≤ 2.

5 Discussion

We have implemented Kiasan using the Bogor frame-
work [19, 26]. The prototype uses a specification proces-
sor similar to jmlc [6] that translates annotated Java source
code and embeds the effective contracts in the code. The
resulting code is compiled using a standard Java compiler,
which is then translated to Bogor’s input language (BIR) ex-
tended with Java bytecode instructions modeled as BIR lan-
guage extensions [26]. Each language extension modeling
a Java bytecode is interpreted using the semantics presented
in Section 3 and enhanced with the versioning techniques
described in Section 4. The Java bytecode to BIR transla-
tion virtually generates one atomic transition for each byte-
code. During the translation, we close the system as de-
scribed in Section 4. We use CVC Lite [3] as a decision
procedure to determine satisfiability of path conditions.

We have evaluated our prototype on the examples pre-
sented in Table 1 as well as some other examples (e.g., ex-
amples used to demonstrate ESC/Java.) For all the exam-
ples, we use versions that work on primitive Java integer
type and object types to demonstrate how Bogor/Kiasan can
reason about open systems with and without complete sys-
tem implementation. The Red-black Tree example is from
Java 5’s java.util.TreeMap; we adapted the primitive in-
teger version from the object type version. The rest of the
examples, except for the merge example, are from [24].

During our experiments, we found that errors caused by
contract violations or runtime exceptions are usually found
quickly with small k bound. For example, we tried Bo-
gor/Kiasan on the ESC/Java’s Bag example and found its
errors as quickly as ESC/Java does; on top of that, Bo-
gor/Kiasan produced counter-examples as error evidence.
When sorting an array of Comparable objects where all the
elements are not guaranteed to be non-null, Bogor/Kiasan
signals an exception (as specified in Java 5 API), which are
easily found with k = 2 in less than one second. Another
example is the seeded error on the Red-black Tree example
as described in [23], where we also found quickly on both
the primitive integer and the object type versions with k = 2
in less than two seconds.

To evaluate the performance of Bogor/Kiasan, all exam-
ples data in Table 1 are versions without errors. k denotes
the resource-bound. For all of the examples, we did not
need to use loop bounding. Pre, B-Post, and A-Post denote the
number of states at M’s entry, before executing M’s post,
and after executing M’s post respectively. States denotes the
number of states executed by Bogor/Kiasan. The Time for-
mat is in m:s.ms/m:s.ms (rounded, m=minutes, s=seconds,
and ms=milliseconds.) The first half shows the overall time
required by Bogor/Kiasan (including calls to CVC Lite),
and the second half shows the portions of time taken by
CVC Lite. The timing data does not include translation
time from Java bytecode to BIR. (The translation process

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

Example k Pre B-Post A-Post States Time

Array 1 1 1 1 181 0:00.6/0:00.2
Binary Heap 2 2 2 2 332 0:01.0/0:00.6
deleteMin() 3 3 4 4 628 0:02.3/0:01.7
(int) 4 4 7 7 1.1k 0:05.0/0:04.3
Array 1 1 1 1 86 0:00.4/0:00.0
Insertion Sort 2 1 3 3 214 0:00.7/0:00.3
sort() 3 1 9 9 760 0:02.1/0:01.6
(int) 4 1 33 33 3.4k 0:10.8/0:10.0
Linked-list 1 1 1 1 667 0:00.6/0:00.0
merge() 2 4 5 5 3.3k 0:01.0/0:00.0
(int) 3 9 19 19 16.1k 0:02.6/0:00.6

4 16 69 69 78.5k 0:11.2/0:04.9
Binary 1 2 4 4 1.6k 0:00.8/0:00.1
Search Tree 2 5 21 21 12.6k 0:02.7/0:01.1
insert() 3 26 236 236 233k 0:55.8/0:39.5
(int) 4 - - - - > 10min
Red-black Tree 1 2 5 5 1.4k 0:00.9/0:00.1
remove() 2 6 43 43 34.7k 0:07.3/0:04.2
(int) 3 31 579 579 1M 5:25.9/4:17.5

4 - - - - > 10min

Example k Pre B-Post A-Post States Time

Array 1 1 1 1 218 0:00.7/0:00.3
Binary Heap 2 2 2 2 418 0:01.4/0:00.9
deleteMin() 3 3 4 4 819 0:04.3/0:03.6
(Comparable) 4 4 7 7 1.5k 0:14.5/0:13.6
Array 1 2 2 2 179 0:00.6/0:00.1
Insertion Sort 2 3 4 4 376 0:01.3/0:00.8
sort() 3 4 10 10 1.1K 0:06.4/0:05.6
(Comparable) 4 5 34 34 4.4k 1:15.1/1:13.9
Linked-list 1 1 1 1 904 0:01.1/0:00.0
merge() 2 4 5 5 4.0k 0:01.1/0:00.0
(Comparator) 3 9 19 19 18.7k 0:06.2/0:03.9

4 16 69 69 89.5k 1:06.6/0:58.1
Binary 1 2 4 4 2k 0:00.9/0:00.1
Search Tree 2 5 21 21 15.3k 0:03.1/0:01.1
insert() 3 26 236 236 285k 1:09.7/0:49.0
(Comparator) 4 - - - - > 10min
Red-black Tree 1 2 5 5 1.9k 0:00.9/0:00.1
remove() 2 6 43 43 40k 0:08.3/0:04.7
(Comparator) 3 31 579 579 1.3M 6:01.5/4:40.5

4 - - - - > 10min

Table 1. Experiment Data

can be done transparently and incrementally in a Java Inte-
grated Development Environment.) The experiments were
done using a 2.2GHz Opteron workstation using Java 5 32-
bit with 64 MB heap size. Space constraints do not permit a
thorough discussion, however, we highlight some interest-
ing observations.

Comparable and Comparator impose a total order on a
set of objects as described in Java 5 API. This is crucial
because object ordering relationship is often used in pro-
grams manipulating data structures such as the examples in
Table 1. The transitivity property of the total order cannot
be specified in an executable form because establishing the
transitivity property requires the execution history. To facil-
itate this, we provide a specification pattern for describing
transitive closure relation on objects (e.g., via method calls).
Empowered with this, Bogor/Kiasan successfully checked
the strong properties of merge discussed in Section 2.

As can be expected for the array sorting example (on
Comparables), the number of A-Post follows the formula
Σk

i=0i!. This holds because for any array with n elements,
there are possibly n! orderings (permutations). In our k-
bounded symbolic execution, the state-space for k = i in-
cludes cases for k < i. In the case for the array integer sort-
ing example, the formula is Σk

i=1i! because the case k = 1
and k = 0 are represented using one symbolic execution
path. This happens because in the precondition that we used
for the Comparable version requires that all elements of the
array is non-null, thus, the precondition expands the array
elements up to the bound. In the integer case, we do not
need to require this, thus, both arrays with zero and one el-
ement are not expanded into different execution paths. This
also causes their Pre numbers to be different.

Lazier initialization significantly reduces Kiasan’s per-
formance, for example, Kiasan checked the merge method
for the strong properties described earlier in about thirty
seconds with only lazy initialization for k = 3. Lazier ini-
tialization reduces this to about three seconds by avoiding

non-deterministic choices when calling compare with the
data of contained in the linked-lists.

From most of the experiment data, we can observe that
CVC Lite consumes around half of the running time or
more. We plan to have a tighter integration with CVC Lite
(as library instead of as a separate process communicating
using character strings.)

One weakness that Kiasan shares with all state-
enumeration techniques (e.g., Korat [5], Alloy [10]) is that
it potentially enumerates too many states in order to check
strong specifications precisely (e.g., properties requiring
very precise aliasing information.) Note that methods us-
ing weakest precondition calculation have a similar prob-
lem because in order to be precise, it also has to take possi-
ble aliases between objects and variables into account when
computing statement weakest precondition. To address this,
we plan to investigate using sampling techniques or to de-
velop additional bounding techniques. To improve Kiasan’s
general performance, we can also adopt complementary
techniques such as [12].

6 Related Work

This work is based on [11]; we adapted it to reason about
open systems and introduced a quantifiable bounding tech-
nique that provides fine-grained controls over heap explo-
rations. In addition, we developed techniques to enhance
its performance and alleviate its sources of unsoundess or
intractability. Another main difference is the treatment of
method preconditions; [11] does not symbolically execute
method preconditions early on, instead they maintain nec-
essary mappings to lazily use preconditions during the exe-
cution of the method. For each lazy initialization, it recon-
structs structures to their states before destructive updates,
and executes method preconditions; in our case, we only ex-
ecute the method preconditions once, and we do not require
reconstruction of structures. Another work close to ours is
XRT [9]. To guarantee termination, [9] bound the maximum

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

number of transitions per path. Kiasan prefers bounding the
length of lazier initialization chains first and only uses loop
bounding as the last resort. This provides us with better con-
trol (methodologically) on how we increase the coverage on
paths that exhaust the k-bound without exhausting the loop
bound. Kiasan uses a different bounding technique than the
ones used in Alloy [10], TestEra [17], and Korat [5] as de-
scribed in Section 3. Another difference is that we do not
mandate specifications to check methods; Kiasan can still
symbolically execute methods without their specifications
and check for errors. In contrast to all the work above and
[25, 22], Kiasan is designed to check strong heap properties
of open systems, where some system parts are unavailable
or open ended in addition to unknown input values.

The closest work to ours that address checking proper-
ties of open systems is [8, 7, 2]. They use weakest pre-
condition as the basis of its all-paths compositional analysis
engine while we depend on a path-sensitive analysis using
symbolic execution. Similar to [7], Kiasan’s basic symbolic
execution is relatively sound and complete. One limitation
of Kiasan is that it requires a specification formalism that is
transformable to executable form, similar to JML runtime
monitoring [6]. An advantage of using a path-sensitive anal-
ysis is that it naturally produces a counter-example when an
error is found. We believe it is more intuitive and poten-
tially easier to produce an explanation to describe the er-
ror. In addition, we only use quantifier-free first-order logic
(FOL) in our path condition that is better handled by theo-
rem provers. While this potentially limits the class of spec-
ifications that our current approach handles, some quantifi-
cations on objects can be unfolded up to the resource-bound
of the analysis similar to Alloy [10]. Moreover, we can in-
troduce some specification patterns such as the transitive
closure relation on objects to enrich our analysis without
fully adopting FOL. This allows us to have tighter controls
over the source of incompleteness of our tool (e.g., incom-
pleteness of theorem proving on FOL.) Another difference
is Kiasan can check stronger heap properties similar to [20],
and it allows a mixed compositional/non-compositional rea-
soning that addresses one of the usability problems when
using pure compositional reasoning tools.

Most work on contract-based software verification ma-
nipulates logical formulae. Smallfoot [4] is a symbolic ex-
ecution tool in which execution means updating (formu-
lae including spatial formulae) rather than operational state
transition. TVLA [16] expresses a program and its anno-
tation using FOL formulae with transitive closure and per-
forms data-flow analysis interpreting formulae under three-
valued logic structure. Space constraints do not permit in-
depth discussion, thus, we only offer a high-level compar-
ison. We trade-off complete soundness (unbounded heap)
for fully automatic analysis, while the above approaches ei-
ther use some fixed algorithms to handle a limited number
of heap structures (i.e., limited specification expressiveness)

or require some level of user intervention to help the anal-
ysis. In the end, we do not limit ourselves to the approach
presented here. That is, we can incorporate richer logics and
abstractions in the same way we can enhance concrete ex-
ecution with symbolic execution as they become more ma-
ture and automated analysis is possible.

7 Conclusion and Future Work

We have presented Kiasan, an alternative technique to
reason about open systems based on symbolic execution
that is able to check strong heap properties. We have im-
plemented Kiasan on top of the Bogor framework. Method-
ologically, we envision our tool being used similar to frame-
works like ESC/Java [8]. For example, a user can start
checking a method (even compositionally) without anno-
tation and receive error feedback from the tool. One can
then inspect the feedback or look at the generated counter-
examples to determine whether the errors are really errors
or because of a lack of specification. The user can either
fix the code or add/modify the specifications and repeat the
process. We believe using a small k for interactive program-
ming and checking mode is acceptable, while using larger k
increasingly can be employed using, for example, continu-
ous testing [21] or a distributed solution. We now highlight
several future research directions to improve Bogor/Kiasan.
1. Currently, Kiasan conjoins class invariants and method
preconditions to generate method prestates. Using a two-
staged approach, where we first generate states using class
invariants, and then later use preconditions when we want to
actually check some methods, is better. It allows one to gen-
erate the states using class invariants only once to analyze
all the methods in the class that should satisfy the invariants.
2. Our prototype uses a rudimentary specification proces-
sor that hinders us to conduct systematic case studies. To
address this, we plan to collaborate with the JML-oriented
Integrated Verification Environment (IVE) effort [14]. By
targeting the same specification language, we can reuse a
significant amount of previous work, e.g., the Java library
models. Moreover, [14] plans to support multiple theorem
provers using SMT-Lib [27]. This integration would allow
us to cross-pollinate ideas and to conduct systematic case
studies comparing ESC/Java2 and Bogor/Kiasan.
3. Section 4 describes how we can leverage heap region
and transitivity information for checking strong heap prop-
erties. While these reasoning patterns can be used to check,
for example, the merge method, however, we believe we
need various reasoning patterns for different kinds of strong
properties (e.g., monotonicity). To address this, we plan to
incorporate other common reasoning patterns in Kiasan.
4. Kiasan’s stateless analysis is embarrassingly parallel; we
can fork the analysis when exploring different paths. This
can help curbing the analysis time considering processor de-
velopments are moving toward multicore architecture.

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

References

[1] S. Anand, C. S. Pasareanu, and W. Visser. Symbolic
execution with abstract subsumption checking. SPIN
Workshop on Model Checking of Software, 2006.

[2] M. Barnett, K. R. M. Leino, and W. Schulte. The
Spec# programming system: An overview. Construc-
tion and Analysis of Safe, Secure and Interoperable
Smart devices, 2004.

[3] C. Barrett and S. Berezin. CVC Lite: A new
implementation of the cooperating validity checker.
Computer-Aided Verification, pages 515–518, 2004.

[4] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic
execution with separation logic. Asian Symposium on
Programming Languages and Systems, 2005.

[5] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
automated testing based on Java predicates. Interna-
tional Symposium on Software Testing and Analysis,
pages 123–133, 2002.

[6] Y. Cheon and G. T. Leavens. A runtime assertion
checker for the Java modeling language. Software En-
gineering Research and Practice, 2002.

[7] D. R. Cok and J. Kiniry. ESC/Java2: Uniting ESC/-
Java and JML. Construction and Analysis of Safe, Se-
cure, and Interoperable Smart Devices, 2004.

[8] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nel-
son, J. B. Saxe, and R. Stata. Extended static checking
for Java. Programming Language Design and Imple-
mentation, 2002.

[9] W. Grieskamp, N. Tillmann, and W. Schulte. XRT -
exploring runtime for .NET - architecture and applica-
tions. Workshop on Software Model Checking, 2005.

[10] D. Jackson. Alloy: a lightweight object modelling no-
tation. ACM Transactions on Software Engineering
and Methodology, 11(2):256 – 290, 2002.

[11] S. Khurshid, C. S. Păsăreanu, and W. Visser. Gen-
eralized symbolic execution for model checking and
testing. Tools and Algorithms for Construction and
Analysis of Systems, pages 553–568, 2003.

[12] S. Khurshid and Y. L. Suen. Generalizing symbolic
execution to library classes. In Workshop on Program
Analysis for Software Tools and Engineering, 2005.

[13] J. C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[14] J. R. Kiniry, P. Chalin, and C. Hurlin. Integrating static
checking and interactive verification: Supporting mul-
tiple theories and provers in verification. In Verified
Software: Theories, Tools, Experiments, 2005.

[15] G. T. Leavens, A. L. Baker, and C. Ruby. JML: a Java
modeling language. In Formal Underpinnings of Java,
1998.

[16] T. Lev-Ami and M. Sagiv. TVLA: A framework for
kleene-based static analysis. In International Static
Analysis Symposium, 2000.

[17] D. Marinov and S. Khurshid. TestEra: A novel frame-
work for automated testing of Java programs. Auto-
mated Software Engineering, 2001.

[18] B. Meyer. Object-Oriented Software Construction.
Prentice Hall, 1988.

[19] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An ex-
tensible and highly-modular model checking frame-
work. In 9th European Software Engineering Confer-
ence/11th Foundations of Software Engineering, 2003.

[20] Robby, E. Rodrı́guez, M. B. Dwyer, and J. Hatcliff.
Checking JML specifications using an extensible soft-
ware model checking framework. International Jour-
nal of Software Tools for Technology Transfer, 2006.

[21] D. Saff and M. D. Ernst. Reducing wasted develop-
ment time via continuous testing. International Sym-
posium on Software Reliability Engineering, 2003.

[22] K. Sen, D. Marinov, and G. Agha. CUTE: A con-
colic unit testing engine for C. European Software
Engineering Conference/Foundations of Software En-
gineering, 2005.

[23] M. Vaziri-Farahani. Finding Bugs in Software with a
Constraint Solver. PhD thesis, MIT, 2004.

[24] M. A. Weiss. Data Structures and Algorithm Analysis
in Java. Addison Wesley, 1998.

[25] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Sym-
stra: A framework for generating object-oriented unit
tests using symbolic execution. In Tools and Algo-
rithms for the Construction and Analysis of Systems,
2005.

[26] Bogor website. http://bogor.projects.cis.

ksu.edu.

[27] SMT-LIB: The satisfiability modulo theories library.
http://goedel.cs.uiowa.edu/smtlib.

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

