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Abstract—As software systems grow larger and more com-
plex, debugging takes up an increasingly significant portion of
developers’ time and efforts during software maintenance. To aid
software engineers in debugging, many automated debugging and
repair techniques have been proposed. Both the development and
evaluation of these automated techniques depend on benchmarks
of bugs. While many different defect benchmarks have been
developed, only a few benchmarks are widely used due to the
origin of the collected bugs as well as the usability of the
benchmarks themselves, risking a biased research landscape. This
paper presents BUGSC++, a new benchmark that contains 209
real-world bugs collected from 22 open-source C/C++ projects.
BUGSC++ aims to provide high usability by providing a similar
user interface to the widely used Defects4J. Further, BUGSC++
ensures the replicability of the bugs in its collection by encapsu-
lating each buggy program in a Docker container. By providing
a highly usable real-world defect benchmark for C/C++, we hope
to promote debugging research for C/C++.

Index Terms—software testing, bug, fault, defect benchmark

I. INTRODUCTION

Software developers spend a lot of time testing and fixing
existing code [1]. As the size and complexity of a program
inevitably increase the cost of its maintenance, debugging
techniques such as Fault Localization (FL) [2] or Automated
Program Repair (APR) [3] have been actively researched to
increase developer productivity and reduce the debugging cost.

Various defect data have been used to quantitatively evaluate
and compare the effectiveness and efficiency of automatic
debugging techniques, among which Defects4J [4], a collec-
tion of reproducible real-world defects in open-source Java
programs, and SIR [5] or Siemens [6], a collection of defects
in C programs, are the most widely used. Recent evaluations of
automatic debugging methodologies have been mainly focused
on specific benchmarks, which has the advantage of making
it easier to compare different methodologies, but there is also
a concern that if the evaluation of techniques is focused on
a few defect benchmarks for a long time, the development of
the technology may be over-optimized for those benchmarks.
To avoid this problem, it has been suggested in the literature
that different kinds of benchmarks should be used when
evaluating automatic debugging techniques [3], and several
software engineering journals have encouraged replicability
studies, where existing techniques are evaluated on new data.

In this paper, we propose BUGSC++ (pronounced as bugsy,
with ‘++’ omitted for simplicity), a benchmark that consists

TABLE I: Benchmarks Listed in https://program-repair.org

Name Language/
Platform

Real Bugs?
(# bugs, # projects)

DroixBench [7] Android Yes (24, 15)

C-Pack-IPAs [8] C No†

CodeFlaws [9] C No‡
DBGBench [10] C Yes (27, 2)
ITSP [11] C No†

IntroClass [12] C No†
ManyBugs [12] C Yes (185, 9)

Bears [13] Java Yes (251, 72)
Bugs.jar [14] Java Yes (1,158, 8)
Vul4J [15] Java Yes (79, 52)
Defects4J v2.0 [4] Java Yes (835, 17)

BugsJS [16] JavaScript Yes (453, 10)
FixJS [17] JavaScript Yes (323,907, -)

BugsInPy [18] Python Yes (493, 17)
Refactory [19] Python No†

Defexts [20] Kotlin, Groovy, Scala Yes (654, 413)
BugSwarm [21] Python, Java Yes (2,611, -)
QuixBugs [22] Python, Java No‡

†: Class Assignments, ‡: Programming Competition Submissions

of reproducible defects collected from various open-source
C/C++ programs, to increase the diversity of the defect
benchmark ecosystem. Based on the observation that most
of the popular benchmarks have high usability, we simplify
the usage of essential features such as test execution/coverage
measurement to increase the usability of BUGSC++. We also
use the virtualization application Docker [9] to facilitate the
environment setup for benchmark execution as well as to
ensure the reproducibility of defects.

II. EXISTING BUG BENCHMARKS

Table I lists defect benchmarks reported by https://
program-repair.org, a repository that curates bibliography,
tools, and benchmarks related to APR research (as of 23
May 2023). We will restrict our discussion of existing defect
benchmarks to the ones listed in Table I; widely used, yet older
benchmarks such as SIR [5] and Siemens Suite [6] contain
programs that are too small, and bugs that are artificially
injected, hence are excluded from our discussion.

https://program-repair.org
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As of May 2023, there are six C benchmarks, compared
to four Java benchmarks (excluding the multilingual ones
that include Java, e.g., BugSwarm [21] or QuixBugs [22]),
other than BUGSC++. However, only two of these C bench-
marks contain bugs collected from real-world projects (DBG-
Bench [10], which is an extension of COREBench [23], and
ManyBugs [12]), whereas all four Java benchmarks consist
of real-world bugs. Further, these two C benchmarks consist
only of 11 projects in total, whereas the average number of
projects in Java benchmarks is significantly higher, 37.25. The
comparison suggests that we still need C benchmarks that
contain bugs from more diverse projects.

We have also analyzed the defect benchmarks used by APR-
related papers published in 2022 based on the list at https:
//program-repair.org/bibliography.html: there are currently 64
publications. For each of these, we investigated which defect
benchmark is used for the study; if multiple benchmarks
are used, we counted all of them separately. In total, Java
defect benchmarks appear in 28 publications, whereas C defect
benchmarks appear in only eight publications. More impor-
tantly, out of the 28 publications that study Java defect bench-
mark, 18 contain Defects4J, showing its widespread adoption.
While this is not a complete survey of APR publications from
the year 2022, the sample from https://program-repair.org does
show the dominance of Defects4J as the de facto standard
benchmark, as well as the popularity of Java as the target
language in APR research.

We cautiously attribute the popularity of Defects4J to a
number of factors. Released in 2014, it had sufficient time
to establish itself as the de-facto standard benchmark: more
recent studies use Defects4J to compare their results to earlier
work. However, age is definitely not the only reason. Defects4J
is actively maintained, with each version adding more bugs to
the benchmark. It also provides a convenient and powerful
Command Line Interface (CLI), which facilitates easy exper-
imentation. It is also well integrated with relevant tools such
as the coverage profiler, Cobertura. Taking these factors into
consideration, we set up the following design goals for our
new benchmark:

• Representativity: The benchmark should consist of de-
fects that are representative of real-world software [24].

• Diversity: The benchmark should encompass diverse
defects from different projects, providing a realistic repre-
sentation of real-world scenarios and allowing evaluation
under various conditions.

• Reproducibility: The benchmark should enable the con-
sistent reproduction of the buggy behavior of a program.
This allows researchers and practitioners to evaluate and
compare analysis and repair techniques reliably.

• Usability: The benchmark should be designed with ease
of use in mind, providing convenient features such as
a CLI for common use cases like test execution and
coverage profiling. Usability ensures that the benchmark
can be easily utilized by researchers and developers.

The existing benchmarks for C/C++ programs are either less

TABLE II: Projects and bugs included in BUGSC++

Average SLoC Across All Bugs

Project #. Bugs C C++ C/C++ Header

coreutils 2 58,178 0 2,948
cpp_peglib 10 0 2,037 12,671
cppcheck 30 0 60,289 7,328
dlt_daemon 1 33,303 1,360 1,945
exiv2 20 505 49,294 3,673
jerryscript 11 83,244 0 12,770
libchewing 8 7,484 0 185
libssh 1 42,356 0 39
libtiff 5 56,249 261 2,361
libtiff_sanitizer 4 56,597 261 2,365
libucl 6 6,421 0 706
libxml2 7 202,130 0 26,928
md4c 10 5,224 0 139
ndpi 4 36,056 7,282 13,510
openssl 28 278,756 0 44,341
proj 28 5,222 62,951 4,528
wget2 3 23,186 0 825
wireshark 6 3,246,700 0 140,261
xbps 5 19,629 0 1,017
yaml_cpp 10 0 4,345 4,380
yara 5 32,587 0 4,764
zsh 5 102,906 0 4,940

Total 209 4,296,733 188,080 292,632

realistic because they only contain artificial bugs [6], [5], or
less usable because they do not provide CLI for tasks such as
test execution or coverage profiling [12].

III. BUGSC++

We propose a new defect benchmark, BUGSC++, that
aligns with the design goals discussed earlier and serves as a
comprehensive benchmark for evaluating automatic debugging
techniques against C/C++ programs.

A. Project Selection and Data Collection

To ensure the representativity and diversity, our bench-
mark includes actual defects that were collected from code
changes made to various open-source C/C++ projects, in-
cluding standalone tools (e.g., coreutils, cppcheck, wget2),
libraries (e.g., libssh, libtiff, libxml), parsers/runtimes (e.g.,
jerryscript, md4c, yaml_cpp), and user shell (zsh): refer to https:
//github.com/Suresoft-GLaDOS/bugscpp for more details.

We employ two criteria for choosing projects. First, we
identify projects that have a revision history containing both a
commit that fixed a bug and the corresponding test case. Sec-
ond, we identify projects that have already reported Common
Vulnerabilities and Exposures (CVEs)1 and their associated
fixes. This ensures that the defects included in BUGSC++ have
been recognized as security vulnerabilities or other significant
issues in the software community. For the selection of defects
to include, we use the following criteria: the buggy version
of the project (1) should be successfully built on Ubuntu
18.04 and 20.04 (which we use for our Docker containers
as described in Section III-B), (2) should have available test
cases that can be executed, (3) should exhibit test failures

1https://cve.mitre.org/cve/search_cve_list.html

https://program-repair.org/bibliography.html
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that disappear once patched, and (4) test coverage should be
measurable using tools like gcov. By following this rigorous
selection process, BUGSC++ comprises 209 real-world bugs
collected from a total of 22 projects, as shown in Table II.

B. Dockerization

In comparison to Java, which is designed to be platform-
independent, C/C++ programs are more susceptible to varia-
tions in behavior due to their reliance on different environ-
ments, such as compilers, operating systems, system libraries,
and hardware. This can pose challenges to the reproducibility
of defect benchmarks. To mitigate these issues and ensure
consistent execution environments, we employ Docker, a
lightweight virtualization technique, to build and run all target
projects within a Docker container, thereby enhancing the
reproducibility of the benchmark. In addition to improving
reproducibility, Docker also enhances the usability of the
benchmark. Users no longer need to go through the process of
setting up separate environments for running the benchmark,
reducing the associated setup costs and complexities. The
utilization of Docker provides a standardized execution en-
vironment, simplifying the overall usability of the benchmark
for researchers and practitioners.

C. CLI Commands & Examples

BUGSC++ provides CLIs that facilitate the building and
execution of the included projects. By offering a user-friendly
CLI, BUGSC++ ensures that researchers and practitioners can
easily navigate and interact with the benchmark, i.e., the good
usability. We note that the CLI commands are inspired by the
features offered by Defects4J.

1) Checkout: To check out the code from project P that
contains the V-th bug into the directory D (default: ./<P> ),
one can use the checkout command.

> python bugscpp/bugscpp.py checkout <P> <V> --buggy

--target <D>

ex) Check out the first bug in the zsh project
> python bugscpp/bugscpp.py checkout zsh 1 --buggy

After the command is successfully executed, the source code
can be found in the directory <D>/buggy-<V> . Furthermore,
by omitting the option --buggy, one can get the fixed version of
the bug, which will be saved to the directory <D>/fixed-<V> .

2) Build: The build command allows us to build the
source code in the directory <C> (e.g., <D>/buggy-<V> or
<D>/fixed-<V> ) obtained by the checkout command:

> python bugscpp/bugscpp.py build <C>

ex) Build the first buggy version of the zsh project
python bugscpp/bugscpp.py build ./zsh/buggy-1/

3) Test: To execute the whole test suite after building a
project, one can use the test command. To further ensure
usability and also accommodate the requirements of test-based
automated debugging techniques, BUGSC++ incorporates the
capability to execute individual test cases separately for all
projects, which allows for the independent extraction of results
and dynamic information for each test case. In cases where
projects do not support the execution of individual test cases
(e.g., when all tests are called within a single function), we
have made slight modifications to the test code, by inserting
a switch statement in the test program, to enable the selection
of individual tests by providing the test index as input.

> python bugscpp/bugscpp.py test <C> --output-dir <O>

ex) Run only a subset of test cases
> python bugscpp/bugscpp.py test <C> --output-dir <O>

--case <T1>,...,<Tn>

ex) Run the test cases 1 and 3 of zsh-1

> python bugscpp/bugscpp.py test ./zsh/buggy-1/

--output-dir ./zsh-results --case 1,3

The passed/failed results and the raw output of each test
case T will be saved to <O>/<P>-buggy-<V>-<T>/<T>.test and
<O>/<P>-buggy-<V>-<T>/<T>.output , respectively.

4) Coverage: When building code and running test cases,
including the --coverage option will trigger the usage of
the gcov coverage profiler to measure the coverage of each
test case. Additionally, there is the flexibility to specify gcov

options to obtain the output in the format a user prefers.

> python bugscpp/bugscpp.py build <C> --coverage

> python bugscpp/bugscpp.py test <C> --coverage

--output-dir <O>

ex) Specify the gcov options
> python bugscpp/bugscpp.py test <C> --coverage

--output-dir <O> --additional-gcov-options <OPTIONS>

The coverage results will be saved to the directory
<O>/<P>-buggy-<V>-<T>/gcov/ .

5) Search: To aid systematic evaluation in any experiment
based on BUGSC++, we have added tags to each bug, based
on the characteristics of each defect as well as its fix. Table III
presents the categorization of tags along with the correspond-
ing list of tags within each category. Furthermore, Figure 1

TABLE III: The available tags in BUGSC++

Tag Category Tags

Buggy Lines single-line, multi-line

Patch Types addded, removed, modified

Error Types invalid-condition, invalid-format-string, memory-error,
logical-error, omission, infinite-loop-error,
division-by-zero

Misc. CVE, address-sanitizer
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Fig. 1: Distribution of Bugs by Tag

provides an overview of the statistical summary for each tag
in the dataset. To facilitate user search for specific types of
defects, the search command can be used to extract only those
defects that contain a specific tag T.

> python bugscpp/bugscpp.py search <T>

ex) Find memory-related bugs
> python bugscpp/bugscpp.py search memory_error

More detailed user manuals, as well as descriptions for
individual bugs, are publicly available at: https://github.com/
Suresoft-GLaDOS/bugscpp.

IV. CONCLUSION

We present a new C/C++ program defect benchmark,
BUGSC++, for the evaluation of automatic debugging re-
search. BUGSC++ contains 209 real-world bugs collected
from 22 projects that are written in C/C++. It provides CLIs
to checkout, build, and test individual bugs in a Docker
environment that ensures reproducibility. We will endeavor to
extend BUGSC++ by adding new bugs and projects, as well
as improve the usability of the benchmark.
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