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ABSTRACT

In this paper, we pay attention to the efficiency of automated pro-
gram repair (APR). Recently, an efficient patch scheduling algorithm,
Casino, has been proposed to improve APR efficiency. Inspired
by fuzzing, Casino adaptively chooses the next patch candidate
to evaluate based on the results of previous evaluations. However,
we observe that Casino utilizes only the test results, treating the
patched program as a black box. Inspired by greybox fuzzing, we
propose a novel patch-scheduling algorithm, Gresino, which lever-
ages the internal state of the program to further enhance APR effi-
ciency. Specifically, Gresino monitors the hit counts of branches
observed during the execution of the program and uses them to
guide the search for a valid patch. Our experimental evaluation on
the Defects4J benchmark and eight APR tools demonstrates the
efficacy of our approach.
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1 INTRODUCTION

Automated Program Repair (APR) is a technique that automatically
generates patches for buggy programs. Since the introduction of
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the seminal APR tool, GenProg, in 2009 [52], APR has been actively
researched for the last 15 years, introducing various approaches
such as template-based [31], learning-based [50], and semantics-
based [41] approaches. In particular, the repairability of APR tools
has been significantly improved over the years. For example, jGen-
Prog [36], introduced in 2017, could correctly fix only 2% of the
224 bugs in the Defects4J benchmark [20], while the latest tool,
SRepair [57], can correctly fix 45% of the 695 bugs in the extended
benchmark. This is a remarkable achievement in the field of APR.

While research on repairability should continue, there is another
important aspect of APR that has relatively received less attention:
APR efficiency. Recent APR tools, including the aforementioned
SRepair, are often evaluated under the so-called “perfect fault lo-
calization” assumption, wherein the correct fix location is provided
to the APR tool. Under this assumption, the APR tool generates
hundreds of patch candidates only for the given location and then
runs those candidates against the test suite to find a valid patch.
This assumption is useful for evaluating the repairability of APR
tools. However, it hinders the evaluation of APR efficiency. In this
work, we remove the perfect-fault-localization assumption and turn
our attention to APR efficiency, asking the following question: How
can we explore the patch space efficiently?

ExistingTechniques for Patch-Space Exploration. WhenGen-
Prog was introduced, APR efficiency was one of its main concerns.
For efficient exploration, GenProg associates each patch candi-
date with a fitness score and drives the search toward high-fitness
candidates, using an online search algorithm, specifically genetic
programming [25].

However, more recent APR tools using template-based or learning-
based approaches employ a simplistic method for patch-space explo-
ration. They simply enumerate the patch candidates in a predefined
order based on the suspiciousness scores of the program locations
to which the patch candidates are applied. Such an approach is
suboptimal because it does not consider the runtime information
obtained during the repair process. Indeed, Benton et al. [3] showed
that APR efficiency improves when the original patch scheduling
algorithms of APR tools are replaced with their online algorithm,
SeAPR, which adaptively recomputes the suspiciousness scores of
patch candidates based on the runtime information.

More recently, Kim et al. [21] proposed another adaptive patch-
scheduling algorithm, Casino, that has been shown to be more
efficient than SeAPR and GenProg’s patch-scheduling algorithm.
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Casino formulates the patch space as a tree structure where each
path of the tree represents a distinct patch candidate, as illustrated
in Figure 2. Similar to grammar-based fuzzing [16], Casino tra-
verses the patch-space tree by randomly selecting an edge at each
node, prioritizing edges that are more likely to lead to a valid (a.k.a.,
plausible) patch that passes all available tests. To adjust the likeli-
hood of each edge at runtime, Casino observes test results. When
a previously failing test passes after applying a patch candidate 𝜎 ,
Casino increases the likelihood of the edges leading to 𝜎 .

Our Approach. We observe that Casino uses runtime informa-
tion in a blackbox manner, observing only the test results. Inspired
by greybox fuzzing [4], we propose a new patch-scheduling algorithm,

Gresino, that combines blackbox and greybox information to ex-

plore the patch space more efficiently. Similar to coverage-guided
greybox fuzzing such as AFL [67], Gresino observes branch hit
counts during the repair process. Gresino uses this information
to identify “critical” branches—those whose changes in hit counts
lead to a patch 𝜎 that passes a previously failing test. Gresino then
prioritizes patch candidates that are likely to affect the hit counts
of the critical branches in a way similar to 𝜎 .

To evaluate Gresino, we compare its efficiency against Casino
with the eight APR tools described in § 4.5. When assessed with
the 395 buggy versions of the Defects4J [20] benchmark, Gresino
substantially outperforms Casino in six tools, while performing
similarly in two tools. The high search efficiency of Gresino also
leads to higher recall than Casino, enabling it to fix more bugs
successfully than Casino when given the same time budget.

In summary, we make the following contributions in this paper:

(1) Novel Technique.We introduce a novel patch-scheduling al-
gorithm, Gresino, that outperforms the state-of-the-art patch-
scheduling algorithm, Casino, in terms of APR efficiency. The
key contributor to the efficiency of Gresino lies in its design
that exploits “greybox” information—specifically, branch hit
counts—during the repair process.

(2) Extensive Evaluation. We conduct an extensive evaluation of
Gresino with eight APR tools. For each APR tool and bug, we
schedule up to 3,000 patch candidates using Gresino. Consider-
ing the stochastic nature of Gresino, we repeat the evaluation
10 times for each APR tool and bug pair. For comparison, we
also evaluate Casino 10 times for the same pairs.

(3) Replication Package. We provide a replication package that
includes the implementation of Gresino and the experimental
scripts to reproduce the results presented in this paper. The
replication package is available at:

https://github.com/UNIST-LOFT/GreyboxAPR

2 BACKGROUND

2.1 Automated Program Repair (APR)

Figure 1 shows the typical workflow of automated program repair
(APR) tools. As illustrated in the figure, the majority of APR tools
are test-based, meaning that they generate patches that pass all
available tests. However, those patches, known as plausible patches,
may not necessarily be correct due to the incompleteness of tests.
This is a well-known overfitting problem of APR. Many early APR

Figure 1: Workflow of APR. In this work, we propose a new

patch scheduling algorithm, Gresino, which can be plugged

in at Step 2-1, as a replacement of the original patch schedul-

ing algorithm.

tools stop searching for patches once they find a plausible one. How-
ever, the first-found patch may be incorrect due to the overfitting
problem. To avoid this problem, recent APR tools generate multiple

plausible patches, increasing the chance of including the correct
patch among them [6, 7, 12, 13, 26, 42, 54, 55, 66].

2.2 Search Efficiency in APR

In this work, we focus on the search efficiency for finding plausible
patches. Our goal is to identify as many plausible patches as possible
within a given time budget, ideally all plausible patches in the patch
space of a given APR tool. Please note that there exist separate
techniques to find the correct patch among the plausible ones [5,
14, 17, 49, 51, 59, 61], which is orthogonal to this work.

The problem of search efficiency boils down to how to schedule

the order of evaluating patch candidates, which corresponds to Step
2-1 in Figure 1. As more plausible patches are scheduled earlier in
the patch evaluation process, the search efficiency becomes higher.
In most APR approaches, the scheduling order is determined by the
following two factors: (1) how suspicious a program location 𝑙 is,
and (2) how promising a patch candidate 𝑝 is at 𝑙 . The first factor is
usually determined by a fault localization technique [1], and the
second factor is determined by a patch prioritization technique
(see § 7). A typical APR process involves visiting each suspicious
location 𝑙 in order of their suspiciousness and then evaluating each

https://github.com/UNIST-LOFT/GreyboxAPR
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Algorithm 1 Casino Patch Scheduling Algorithm
Input: 𝑃 : Program to be repaired
Input: Initial patch-space tree T (see the step 0 of § 2.3)
Input: TS: Test-suite
Output: Dpatches
1: Dpatches ← ∅ // Dpatches: Set of detected patches
2: while 𝑡elapsed < 𝑡limit ∧ Continue( ) do
3: // Phase I: Vertical navigation via Thompson sampling
4: 𝑛 := Root(T) // Start patch-tree traversal from the root node
5: while 𝑛 has an enabled outgoing edge do
6: for each enabled edge 𝑒 of 𝑛 do

7: 𝐵𝑒𝑡𝑎 (𝛼𝑘 , 𝛽𝑘 ) ← Label(𝑒 )
8: Draw 𝜃𝑘 according to 𝐵𝑒𝑡𝑎 (𝛼𝑘 , 𝛽𝑘 )
9: end for

10: 𝑒 := argmax
𝑘

𝜃𝑘 // Select the 𝑘-th edge having the maximum 𝜃𝑘

11: 𝑛 := Traverse(𝑛, 𝑒 ) // Traverse edge 𝑛 𝑒→ 𝑛′ and 𝑛 := 𝑛′

12: end while

13:
14: // Phase II: Horizontal navigation via 𝜖-greedy algorithm
15: 𝑠 ← MostSuspiciousScore(T (𝑛) )
16: L← Candidates(𝑠 )
17: Toss a coin with success probability 𝜖
18: if success then
19: 𝜎𝑛𝑒𝑥𝑡 ← ChooseAtRandom(L) // choose at random
20: else

21: 𝜎𝑛𝑒𝑥𝑡 ← ChooseInPredeterminedOrder(L)
22: end if

23:
24: patch, execinfos← PatchEval(𝑃, 𝜎𝑛𝑒𝑥𝑡 ,TS)
25: if IsValid(patch, execinfos) then
26: // A valid (a.k.a., plausible) patch is found
27: Dpatches ← Dpatches ∪ {patch}
28: end if

29:
30: // Update edge labels
31: Update(execinfo, T,L𝑀𝑆𝑈 , 𝜎𝑛𝑒𝑥𝑡 )
32: end while

patch candidate 𝑝 available at 𝑙 in order of their likelihood of being
the correct patch. To limit the search space, most APR tools modify
only a single program location and we consider this setting in this
work.

In most APR approaches, the order of validating patch candidates
is predetermined and remains unchanged throughout the repair
process; that is, the patch scheduling is offline. In contrast, recent
work [3, 21] has shown that the search efficiency of APR tools can
be improved by replacing the offline patch scheduling algorithm
with an online one; that is, the order of validating patch candidates
changes dynamically based on the runtime information obtained
during the repair process.

2.3 Online Patch Scheduling

In this subsection, we describe the current state-of-the-art online
patch scheduling technique, Casino [21], which forms the basis of
our approach. Casino represents the patch space as a tree structure
where each path of the tree represents a distinct patch candidate.
For example, a patch 𝜎 applicable at a program location 𝑙 within a

method𝑚 in a file 𝑓 is represented as a path 𝑟 → 𝑓 →𝑚 → 𝑙 → 𝜎

where 𝑟 is the root node of the tree.
The Casino scheduling algorithm selects a patch candidate for

validation by traversing the tree top-down from the root node to
a leaf node. At each intermediate node, it chooses the next edge
to traverse at random with higher probabilities for edges deemed
more promising. Edges are considered more promising if taking
them during the current repair session has led to the discovery
of a greater number of “interesting” patches. The definition of an
“interesting patch” is given below:

Definition 1 (Interesting Patch). A patch 𝜎 is considered inter-
esting when the program 𝑝 patched with 𝜎 passes a negative (i.e.,
previously failing) test.

Algorithm 1 describes the Casino patch scheduling algorithm
and Figure 2 illustrates how it works step by step. It is assumed that
fault localization is performed before the patch scheduling begins,
as is the case in most APR tools. The top-left corner of the figure
shows an example table summarizing the fault localization result,
showing the suspiciousness scores (abbreviated as s-scores) of each
program location 𝑙 within method𝑚 in file 𝑓 .

Step 0) Before running the Casino algorithm, an initial patch-
space tree is constructed. The leaves of this tree represent suspicious
program locations 𝑙 obtained from fault localization. At a later step
when 𝑙 is selected for repair, node 𝑙 is expanded with the patch
candidates that the APR tool generates at 𝑙 . The initial patch-space
tree T obtained at this step is passed as input to Algorithm 1. In
our running example, we have 5 suspicious program locations,
𝑙1, 𝑙2, . . . , 𝑙5, which constitute the leaves of the patch-space tree.
Initially, all edges of the patch-space tree are disabled (denoted
with dotted lines in the figure), reflecting the fact that no runtime
information is available to guide the traversal of the tree.
Step 1) Casino selects a patch candidate for validation by navigat-
ing the patch space. The patch-space navigation is performed in
two phases. In the first phase (lines 3–12 of Algorithm 1), Casino
traverses the patch-space tree top-down from the root node along
enabled edges. Since all edges are initially disabled, this phase in-
stantly ends without traversing any edge.
In the second phase (lines 14–22), Casino looks for the most

suspicious score 𝑠 of the program locations within T (𝑛)—i.e., the
patch-space subtree rooted at the current node 𝑛 (line 15). Sub-
sequently, it extracts a list L of patch candidates available at the
locations with score 𝑠 (line 16). Since the first phase has ended
without traversing any edge, 𝑛 refers to the root node of the patch-
space tree and T (𝑛) is identical to the entire patch-space tree. In
our example, the program’s most suspicious location is 𝑙2 with a
suspiciousness score of 0.8, and three patch candidates—𝜎1, 𝜎2, and
𝜎3—are available in L.

Most APR tools validate each patch candidate in a predetermined
order. For example, learning-based tools validate patch candidates in
the order of patch likelihood returned from a trained model [55, 68].
However, there is no guarantee that the predetermined order is
optimal for finding interesting patches. To resolve this issue, Casino
allows for the random selection of patch candidates from L (line 19)
as well as selection based on the predetermined order (line 21).
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Figure 2: Overview of how the Casino patch scheduling algorithm works.

Step 2) Suppose that in the previous step (i.e., step 1), 𝜎2 was ran-
domly chosen and after applying it to the program, a negative test
passes, making 𝜎2 an interesting patch. When this occurs, Casino
updates the relevant edges of the patch-space tree (line 31). The
update is twofold. First, the edges along the path leading to 𝜎2,
namely 𝑟 → 𝑓1 →𝑚1 → 𝑙2 are enabled. These edges are shown in
red in the figure. Second, the neighboring edges of the red edges
are also enabled. These edges are shown in blue in the figure. More
specifically, given an enabled edge 𝑛1 → 𝑛2, all edges 𝑛1 → 𝑛3
where 𝑛3 ≠ 𝑛2 are considered in the neighborhood and are enabled.

Each enabled edge is labeled with a probability distribution that
represents the likelihood of finding an interesting patch along that
edge. Casino uses the Beta distribution for this purpose. The Beta
distribution, 𝐵𝑒𝑡𝑎(𝛼, 𝛽), is a continuous probability distribution
defined on the interval [0, 1] and its shape is determined by two
parameters, 𝛼 and 𝛽 . Figure 3 shows examples of Beta distributions
with different 𝛼 and 𝛽 values.

When enabling initially disabled edges, Casino assigns 𝐵𝑒𝑡𝑎(3, 2)
to the edges leading to an interesting patch (the red edges in the
figure), and 𝐵𝑒𝑡𝑎(2, 2) to the neighboring edges (the blue edges
in the figure). 𝐵𝑒𝑡𝑎(3, 2) and 𝐵𝑒𝑡𝑎(2, 2) are shown in Figures 3(b)
and 3(a), respectively. Notice that as 𝛼 becomes larger than 𝛽 , the
Beta distribution becomes more left-skewed (the mode shifts to
the right). This implies that the red edges labeled with 𝐵𝑒𝑡𝑎(3, 2)—
those that directly contribute to an interesting patch—are deemed
more promising than the blue edges labeled with 𝐵𝑒𝑡𝑎(2, 2)—those
neighboring the red edges.
Step 3) At the next iteration, Casino repeats the process of select-
ing a patch candidate. As before, the process starts with traversing
the patch-space tree from the root node 𝑟 . In our example, 𝑟 has
only one enabled edge, 𝑟 → 𝑓1, and the algorithm traverses to 𝑓1.
The 𝑓1 node has two enabled edges, 𝑓1 → 𝑚1 and 𝑓1 → 𝑚2. To
choose one of them, Casino samples a value in [0, 1] from each
Beta distribution associated with the enabled edges and selects the
edge with the highest sample value (lines 6–11).

0.0 0.5 1.0
0.0

0.5

1.0

1.5

(a) 𝐵𝑒𝑡𝑎 (𝛼 = 2, 𝛽 = 2)

0.0 0.5 1.0
0.0
0.5
1.0
1.5

(b) 𝐵𝑒𝑡𝑎 (𝛼 = 3, 𝛽 = 2)

0.0 0.5 1.0
0

1

2

(c) 𝐵𝑒𝑡𝑎 (𝛼 = 5, 𝛽 = 2)
Figure 3: Examples of Beta distributions, 𝐵𝑒𝑡𝑎(𝛼, 𝛽)

In our example, the edges 𝑓1 →𝑚1 and 𝑓1 →𝑚2 are associated
with 𝐵𝑒𝑡𝑎(3, 2) and 𝐵𝑒𝑡𝑎(2, 2), respectively. Casino samples values
𝜃1 and 𝜃2 from 𝐵𝑒𝑡𝑎(3, 2) and 𝐵𝑒𝑡𝑎(2, 2), respectively. It is more
likely that 𝜃1 > 𝜃2 than the other way around because 𝐵𝑒𝑡𝑎(3, 2)
is more left-skewed than 𝐵𝑒𝑡𝑎(2, 2). See Figure 3. Thus, the edge
𝑓1 → 𝑚1 is more likely to be chosen than 𝑓1 → 𝑚2. However,
𝑓1 → 𝑚2 can still be chosen due to the stochastic nature of the
selection process.
Suppose 𝑓1 → 𝑚2 is chosen and the algorithm traverses to𝑚2.

Since𝑚2 has no outgoing enabled edge, phase I ends. Subsequently,
in phase II, Casino looks for the most suspicious locations within
T (𝑚2) and extracts a list of patch candidates available at those
locations. T (𝑚2)—the subtree rooted at𝑚2—contains 𝑙3, 𝑙4 and 𝑙5,
and 𝑙3 and 𝑙4 have the highest suspiciousness scores of 0.5 among
them. Thus, Casino extracts a list of patch candidates available at 𝑙3
and 𝑙4 (i.e., 𝜎4, 𝜎5, . . . , 𝜎8) and chooses one of them either randomly
or based on the predetermined order, as explained in step 1.
Step 4) Suppose that in the previous step (i.e., step 3), 𝜎6 was ran-
domly chosen and after applying it to the program, a negative test
passes. Then the edges leading to 𝜎6, i.e., 𝑟 → 𝑓1 →𝑚2 → 𝑙4, are
enabled. In addition, a neighboring edge,𝑚2 → 𝑙3, is also enabled.
Notice that 𝑟 → 𝑓1 and 𝑓1 → 𝑚2 were already enabled at a

previous step when the first interesting patch, 𝜎2, was found. Now
that an additional interesting patch (i.e., 𝜎6) has been found along
these edges, Casino updates the Beta distributions associated with
these edges.When a new interesting patch is found along an already
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enabled edge 𝑒 , Casino increases the𝛼 value of the Beta distribution
of 𝑒 by 2𝑛 , where 𝑛 is the number of additional interesting patches
found along 𝑒 .

Relation to Fuzzing. The online scheduling policy of Casino
is akin to that of fuzzing, as noted by its authors [21]. Similar to
fuzzing, the repair process is guided by runtime information, specif-
ically test results. The following summarizes the patch scheduling
policy used in Casino:

Guidance Policy 1 (Blackbox Guidance Policy). While traversing
the patch-space tree, this policy gives higher priority to edges that
are more likely to lead to the discovery of interesting patches. Note
that the only runtime information used in this policy is whether a
test passes or fails after applying a patch.

3 PROPOSED TECHNIQUE

The recent success of fuzzing is largely due to the use of greybox
approaches. Unlike blackbox fuzzing which uses only the input-
output behavior of the program, greybox fuzzing leverages the
program’s internal state such as branch coverage to guide the search
for bug-revealing inputs. However, current online patch scheduling
techniques such as Casino [21] and SeAPR [3] use a blackbox
approach; they only use test results to guide the search for valid
patches. In this work, we introduce a greybox patch scheduling
technique to further enhance the efficiency of APR.

3.1 What to Observe: Critical Branches

Similar to coverage-guided greybox fuzzing, we leverage coverage
information observed during program execution. However, fuzzing
and APR have different goals and we utilize coverage information
in a different way from fuzzing.

Our key insight is that the differences in the program’s behavior

between the original and validly patched programs can provide useful

hints for discovering other valid patches. We capture the program’s
behavior using program spectra [15], specifically, branch-count
spectra, which count the number of times each branch is taken
during the execution of the program. Greybox fuzzers such as AFL
similarly capture coverage information.

Suppose that while performing APR, an “interesting” patch that
makes a previously failing test pass is found.1 The behavioral dif-
ferences between the original and patched programs can be repre-
sented as the differences in the branch counts. Those branches taken
a different number of times between the two programs—which we
call critical branches (see Definition 2)—contribute to causing the
test to pass. In the remaining repair process, we monitor critical
branches to guide the search for other valid patches.

Definition 2 (Critical Branch). Given the original buggy program
𝑃0 and its patched version 𝑃★ that passes a negative test 𝑡 , a critical
branch 𝑏★ with regard to 𝑡 is an element of the following set:

{𝑏★ | 𝑐𝑜𝑢𝑛𝑡J(𝑃★, 𝑡)K(𝑏★) ≠ 𝑐𝑜𝑢𝑛𝑡J(𝑃0, 𝑡)K(𝑏★)}
where 𝑐𝑜𝑢𝑛𝑡J(𝑃, 𝑡)K(𝑏★) denotes the number of times the branch
𝑏★ is taken during the execution of the program 𝑃 for test 𝑡 . Given
multiple interesting patches, we combine the critical branches for
each interesting patch by taking their union.
1See Definition 1 for the definition of an interesting patch.

We distinguish between two types of critical branches—positive
and negative critical branches—that are defined as follows.

Definition 3 (Positive Critical Branch). Given the original buggy
program 𝑃0 and its patched version 𝑃★ that passes a negative test 𝑡 ,
a positive critical branch 𝑏+★ with regard to 𝑡 is an element of the
following set: {𝑏+★ | 𝑐𝑜𝑢𝑛𝑡J(𝑃★, 𝑡)K(𝑏+★) > 𝑐𝑜𝑢𝑛𝑡J(𝑃0, 𝑡)K(𝑏+★)}

Definition 4 (Negative Critical Branch). Given the original buggy
program 𝑃0 and its patched version 𝑃★ that passes a negative test 𝑡 ,
a negative critical branch 𝑏−★ with regard to 𝑡 is an element of the
following set: {𝑏−★ | 𝑐𝑜𝑢𝑛𝑡J(𝑃★, 𝑡)K(𝑏−★ ) < 𝑐𝑜𝑢𝑛𝑡J(𝑃0, 𝑡)K(𝑏−★ )}

3.2 How to Guide: Greybox Guidance Policy

In this subsection, we introduce our new patch scheduling algo-
rithm, Gresino, which builds upon the Casino algorithm. As in
Casino, Gresino performs online patch scheduling by travers-
ing the patch-space tree. However, Gresino incorporates a new
guidance policy for navigating the patch-space tree as described
below:

Guidance Policy 2 (Greybox Guidance Policy). While traversing
the patch-space tree, this policy gives higher priority to edges that
are more likely to lead to a patch candidate that behaves similarly

to the interesting patches found earlier during the repair process.

We approximate the patch behavior based on critical branches
as follows:

Definition 5 (Count-based Similarity of Patch Behavior). Given a
positive critical branch 𝑏+★ extracted from an interesting patch 𝜎★
and test 𝑡 , a patch 𝜎 is considered similar to 𝜎★ with regard to 𝑏+★,
if the following condition holds:

𝑐𝑜𝑢𝑛𝑡J(𝑃𝜎 , 𝑡)K(𝑏+★) > 𝑐𝑜𝑢𝑛𝑡J(𝑃0, 𝑡)K(𝑏+★)
where 𝑃𝜎 denotes the program obtained by applying the patch 𝜎 to
the original buggy program 𝑃0. This definition can be extended to
negative critical branches 𝑏−★ in a similar manner.

We now refine Guidance Policy 2 (Greybox Guidance Policy)
based on Definition 5 as follows:

Guidance Policy 3 (Greybox Guidance Policy (Refined)). While
traversing the patch-space tree, this policy gives higher priority to
edges that are more likely to lead to a patch candidate that shows
count-based similarity to the interesting patches found earlier during
the repair process.

3.2.1 Blackbox vs. Greybox Guidance Policy. Figure 4 illustrates
the difference between the blackbox and greybox guidance policies.
While traversing the patch-space tree, the blackbox guidance policy
(Figure 4(a)) consults the Beta distributions of the enabled edges
to decide which edge to traverse next, as described in § 2.3. Notice
that each edge is associated with a single Beta distribution which
represents the likelihood of the edge leading to an interesting patch.

In contrast, when traversing the patch-space tree with the grey-
box guidance policy (Figure 4(b)), each edge is associated with a
set of Beta distributions, one for each critical branch. For example,
in Figure 4(b), the left edge is associated with the Beta distribu-
tions of the three critical branches indexed as 0, 1, and 2. Each
Beta distribution represents the likelihood of the edge leading to a
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(a) Traversal with blackbox guidance policy

(b) Traversal with greybox guidance policy. Each edge is labeled

with the indices of the critical branches relevant to the edge. As

shown in the table on the right, each critical branch is associated

with a unique branch ID of the program under repair (the 2nd

column), whether the critical branch is positive or negative (the

3rd column), and the Beta distribution of the critical branch (the

4th column).

Figure 4: Comparing blackbox and greybox guidance policies.

While the figures are presented for the root level only, other

levels are treated similarly.

patch candidate that shows count-based similarity to the interesting
patches found earlier.

The blackbox and greybox guidance policies differ in performing
the following operations on the patch-space tree:

• Tree Traversal: Unlike the blackbox guidance policy, multiple
Beta distributions can be available for an edge under consideration.
We randomly select one of them in the current implementation
for simplicity. For example, in Figure 4(b), if index 0 and 4 are
randomly selected for the left and right edges, respectively, then
𝐵𝑒𝑡𝑎(𝛼0, 𝛽0) and 𝐵𝑒𝑡𝑎(𝛼4, 𝛽4) are used to decide which edge to
traverse. Alterantively, it could also be possible to consider all Beta
distributions associated with the critical branches – for instance,
considering indices 0, 1, and 2 for the left edge and 2, 3, and 4 for
the right edge. However, to keep the runtime overhead low, we opt
for a simple random selection.
• Updating Beta Distributions: In both policies, the Beta distribu-
tions are updated when a new interesting patch is found. However,
the two policies update different Beta distributions. In the greybox
guidance policy, we first identify the critical branches relevant to
the interesting patch and then update the Beta distributions as-
sociated with these critical branches. For example, in Figure 4(b),
suppose a new interesting patch identifies two critical branches
𝑏+0 and 𝑏−2 , where 𝑏𝑖 represents the critical branch at index 𝑖 and
the superscript + (or −) indicates that the critical branch is positive
(or negative). For 𝑏+0 , its associated Beta distribution, 𝐵𝑒𝑡𝑎(𝛼0, 𝛽0),

is updated into 𝐵𝑒𝑡𝑎(𝛼0 + 1, 𝛽0). Similarly, 𝐵𝑒𝑡𝑎(𝛼2, 𝛽2) is updated
into 𝐵𝑒𝑡𝑎(𝛼2 + 1, 𝛽2) for 𝑏−2 .
• Initializing Beta Distributions: Similar to the update opera-
tion, the two policies initialize different Beta distributions. Suppose
a fresh critical branch 𝑏+4 is obtained. Since 𝑏+4 is a fresh critical
branch (previously, only𝑏−4 was identified), a fresh Beta distribution,
𝐵𝑒𝑡𝑎(1, 1), is initialized for 𝑏+4 .

3.2.2 Potential Benefits of Greybox Guidance Policy. Our greybox
guidance policy offers the following potential benefits over the
blackbox guidance policy:
Potential Benefit 1 (More InformativeGuidance): In Figure 4(a),
suppose that 𝑁 interesting patches have been found both in the left
subtree (i.e., T1) and the right subtree (i.e., T2). In the blackbox guid-
ance policy, both edges of node 𝑟 would have equal chances of being
selected. However, the execution patterns of the interesting patches
may differ between the two subtrees. For example, consider the
following scenario: The 𝑁 interesting patches found in T1 observe
an increase in the count of a sole critical branch 𝑏★ compared to
that in the original program. Meanwhile, the 𝑁 interesting patches
found in T2 observe an increase only 𝑁 /2 times, and for the remain-
ing 𝑁 /2 times, the count of 𝑏★ decreases. In the greybox guidance
policy, the edge leading to the left subtree (i.e., T1) would be more
likely to be selected, as it is more likely to lead to a patch candidate
that behaves similarly to the interesting patches found earlier. As
illustrated in this example, the greybox policy can guide the search

efficiently by exploiting richer information than is available in the

blackbox policy.

Potential Benefit 2 (Program Dependence Awareness): Con-
sider an interesting patch 𝜎★ that modifies a method𝑚1. Suppose
applying 𝜎★ changes the number of times a critical branch 𝑏★ ∈𝑚2
is taken. Note that modifying𝑚1 may affect the execution of an-
other method𝑚2. In the blackbox guidance policy, the dependence
between𝑚1 and𝑚2 is not considered. The discovery of 𝜎★ only
affects the Beta distribution of the edge associated with 𝑚1. In
contrast, the greybox guidance policy can accommodate the depen-
dence between𝑚1 and𝑚2 to the search process. This is because the
Beta distributions of the critical branches are shared across multiple
edges. For example, in Figure 4(b), a critical branch indexed as 2 is
shared between the left and right edges. In summary, the greybox
policy can guide the search efficiently by considering the program

dependence information observed via critical branches.

3.2.3 Adjustive Guide between Blackbox and Greybox Policies. De-
spite the potential benefits of the greybox guidance policy, it does
not necessarily mean that the greybox guidance policy is always
superior to the blackbox guidance policy. Therefore, we propose a
hybrid approach that combines the blackbox and greybox guidance
policies. In Gresino, the traversal of the patch-space tree is started
with the blackbox guidance policy of Casino. While traversing
the tree, Gresino allows switching to the greybox guidance policy
at a random node of the patch-space tree. This switch is allowed
to occur only if a set of critical branches CB is not empty. CB is
initially empty and is updated whenever an interesting patch 𝜎★
is found. Specifically, it is extended with the critical branches rele-
vant to 𝜎★. If CB is not empty, the switch to the greybox guidance
policy at node 𝑛 is made with a probability 𝜆, which we increase as
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Algorithm 2 Gresino Patch Scheduling Algorithm. Changes to
Casino are highlighted in blue.
Input: 𝑃 : Program to be repaired
Input: Initial patch-space tree T
Input: TS: Test-suite consisting of a negative test and positive tests
Output: Dpatches
1: Dpatches ← ∅ // Dpatches: Set of detected patches
2: CB← ∅ // CB: Set of critical branches
3: while 𝑡elapsed < 𝑡limit ∧ Continue( ) do
4: // Phase I: vertical navigation with blackbox guidance policy
5: 𝑛 := Root(T) // Start patch-tree traversal from the root node
6: while 𝑛 has an enabled outgoing edge do
7: if CB ≠ ∅ then
8: Toss a coin with success probability 𝜆
9: if success then break // jump to line 20
10: end if

11: end if

12: for each enabled edge 𝑒 of 𝑛 do

13: 𝐵𝑒𝑡𝑎 (𝛼𝑘 , 𝛽𝑘 ) ← Label(𝑒 )
14: Draw 𝜃𝑘 according to 𝐵𝑒𝑡𝑎 (𝛼𝑘 , 𝛽𝑘 )
15: end for

16: 𝑒 := argmax
𝑘

𝜃𝑘 // Select the 𝑘-th edge having the maximum 𝜃𝑘

17: 𝑛 := Traverse(𝑛, 𝑒 ) // Traverse edge 𝑛 𝑒→ 𝑛′ and 𝑛 := 𝑛′

18: end while

19: // Phase II
20: 𝑠 ← MostSuspiciousScore(T (𝑛) )
21: Toss a coin with success probability 𝜖
22: if success then
23: if CB ≠ ∅ then
24: // vertical navigation with greybox guidance policy
25: while 𝑛 has an enabled outgoing edge do
26: 𝑏★ ← ChooseAtRandom(CB)
27: for each outgoing edge 𝑒 of 𝑛 do

28: if 𝑠 ∈ Score(𝑒 ) then
29: 𝐵𝑒𝑡𝑎 (𝛼𝑘 , 𝛽𝑘 ) ← Label(𝑒 ) [𝑏★]
30: Draw 𝜃𝑘 according to 𝐵𝑒𝑡𝑎 (𝛼𝑘 , 𝛽𝑘 )
31: end if

32: end for

33: 𝑒 := argmax
𝑘

𝜃𝑘

34: 𝑛 := Traverse(𝑛, 𝑒 )
35: end while

36: 𝜎𝑛𝑒𝑥𝑡 ← 𝑛

37: else

38: 𝜎𝑛𝑒𝑥𝑡 ← ChooseAtRandom(Candidates(𝑠 ) )
39: end if

40: else

41: 𝜎𝑛𝑒𝑥𝑡 ← ChooseInPredeterminedOrder(Candidates(𝑠 ) )
42: end if

43:
44: patch, execinfos← PatchEval(𝑃, 𝜎𝑛𝑒𝑥𝑡 ,TS)
45: if IsValid(patch, execinfos) then Dpatches ← Dpatches ∪ {patch}
46: end if

47: if IsInteresting(patch, execinfos) then
48: CB← CB ∪ ExtractCriticalBranches(execinfos)
49: end if

50:
51: Update(execinfo, T,L𝑀𝑆𝑈 , 𝜎𝑛𝑒𝑥𝑡 ,CB)
52: end while

the use of the blackbox guidance policy at node 𝑛 fails to find an
interesting patch more number of times. Once the switch is made,
the remaining traversal of the tree is performed with the greybox
guidance policy.
3.2.4 Putting All Together. Algorithm 2 shows the Gresino algo-
rithm, where the differences between Casino and Gresino are
highlighted in blue. The input-output interface of Gresino is iden-
tical to that of Casino. The algorithm takes as input a program 𝑃

to be repaired, the initial patch-space tree T and a test-suite TS,
and produces as output a set of detected patches.2 In Algorithm 2,
we assume that TS has a single negative test for simplicity, but the
algorithm can be easily extended to handle multiple negative tests.

At the start, Gresino runs in the same manner as Casino, as
initially there are no critical branches to consider. The algorithm
maintains a set of critical branches CB (initially ∅) and extends
it with the critical branches satisfying Definition 2, whenever an
interesting patch is found (lines 47–49).

Gresino starts to work differently from Casino once CB be-
comes non-empty. Given a non-empty CB, tree traversal using the
blackbox guidance policy is allowed to switch to the greybox guid-
ance policy with a probability 𝜆 (line 7–11). Then, tree traversal
with the greybox guidance policy is performed in lines 24–36. The
traversal is performed all the way down to the leaf node, which
corresponds to a patch candidate to be evaluated (line 36). While
traversing the tree with the greybox guidance policy, we do not
distinguish between enabled and disabled edges. Thus, the traversal
is guaranteed to reach a leaf node. However, at each intermediate
node of the tree, Gresino considers only the edges associated with
the most suspicious score 𝑠 (lines 28–31).3 For example, consider
the rightmost patch-space tree shown in Figure 2. Suppose that the
switch to the greybox guidance policy is made at node𝑚2. In this
case, the most suspicious score in T (𝑚2)—the subtree rooted at
𝑚2—is 0.5 associated with 𝑙3 and 𝑙4. Thus, only the edges leading to
𝑙3 and 𝑙4 are considered for traversal, while the other edges such as
𝑚2 → 𝑙5 are ignored.

4 EXPERIMENTAL DESIGN AND SETUP

4.1 Research Questions

To evaluate our approach Gresino, we ask the following four re-
search questions:
• RQ1 (Search Efficiency): How efficiently does Gresino find
valid patches? We call a patch valid when it passes all available
tests. A valid patch is also referred to as a plausible patch in APR
literature.
• RQ2 (Recall): In how many versions does Gresino find accept-

able patches? We call a patch acceptable when it is valid and is
considered correct. Refer to § 4.2 for the definition of acceptable
patches.
• RQ3 (Ablation Study): Gresino uses both the greybox and
blackbox guidance policies. How does the performance of Gresino
change when one of the guidance policies is removed?
• RQ4 (Generalizability): Does the APR efficiency of Gresino
generalize to a fresh benchmark?

2For a description of how the initial patch-space tree is constructed, see step 0 of § 2.3.
3Score(𝑒) returns a set of the suspicious scores of the locations reachable through 𝑒 .
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4.2 Patch Correctness

In APR literature, patch correctness has been determined either
manually or by using an additional test suite, typically generated
with an automated test generation tool. The former is prone to
subjectivity and difficult to use when there is a large number of
patches to review. On the other hand, the latter is more scalable
but it may fail to identify some incorrect patches.

In our experiments, we obtain tens of thousands of valid patches
(31,759 patches) and resort to an automatic approach. To mitigate
the risk of failing to identify incorrect patches, we employ a differ-
ential testing tool, DiffTGen [58], which is specifically designed to
detect incorrect patches. If DiffTGen finds no semantic difference
between an obtained patch and the corresponding correct version
provided in the benchmark, we classify the patch as acceptable. The
same approach was used to evaluate Casino [21].

4.3 Implementation of Gresino

Gresino is implemented on top of SimAPR [21, 22], which provides
a framework to evaluate patch scheduling algorithms. SimAPR con-
tains the implementation of Casino, which we have extended to
develop Gresino. However, unlike Casino, Gresino’s greybox
approach requires instrumenting each branch 𝑏 of the program
under repair to count the number of times 𝑏 is executed. Our im-
plementation instruments Java bytecode using ASM [9]. When a
patch is applied, only the modified bytecode is re-instrumented.
Our instrumentation is similar to that of AFL [4, 67], which also
measures branch hit counts with low overhead.

4.4 Evaluation Methods

In this section, we describe how we evaluate the research questions.

RQ1 (Search Efficiency). We measure the search efficiency of
Gresino by examining how the number of valid patches increases
with the increase of (1) the number of evaluated patch candidates
and (2) time. The former assesses the algorithmic efficiency, while
the latter considers time overhead. For comparison, the efficiency
of Casino is also measured in the same way.

Both Casino and Gresino, as patch-scheduling algorithms, can
be applied to most template-based or learning-based APR tools. We
apply both algorithms to the eight APR tools described in § 4.5.
For this purpose, we utilize the SimAPR framework [21, 22]. This
framework enables APR to be conducted in diverse settings with a
user-chosen patch-scheduling algorithm and an APR tool. It also
ensures that the same fault localization results of buggy versions
are used across different settings, irrespective of the chosen patch-
scheduling algorithm and APR tool.

Considering the stochastic nature of Gresino and Casino, we
run each algorithm 10 times with unique random seeds. We also
measure the efficiency of each APR tool without applying Gresino
or Casino. This is to compare the efficiency of Gresino with that of
the original scheduling algorithm of each APR tool. These original
scheduling algorithms are deterministic and we run them only once.
For each repair session, we evaluate up to 3,000 patch candidates in
all three settings, i.e., Gresino, Casino, and the original scheduling
algorithm of each APR tool.

RQ2 (Recall). To measure recall, we count the number of buggy
versions for which Gresino finds acceptable patches. We consider

a scenario where automatically generated valid patches are ranked
using a patch-ranking technique [5, 14, 49, 51, 59, 61]. We inves-
tigate how often an acceptable patch is ranked within the top-𝑁 ,
among the valid patches collected during the 3,000 trial limit. For
patch ranking, we utilize ODS [61], the state-of-the-art machine-
learning-based patch classification tool.

RQ3 (Ablation Study). We compare the performance of Gresino,
which combines greybox and blackbox guidance policies, against
its two variations: one without the greybox guidance policy and the
other without the blackbox guidance policy. Note that the former is
equivalent to Casino. In the second variant that uses only the grey-
box guidance policy, tree traversal always immediately switches
to the greybox guidance policy without using the blackbox policy,
once a set of critical branches becomes non-empty. In Algorithm 2,
this can be achieved by setting the value of 𝜆 to 1 in line 8.

RQ4 (Generalizability). We evaluate Gresinowith a fresh bench-
mark not used in the evaluations for RQ1, RQ2, and RQ3, as detailed
in § 4.5.

4.5 Evaluation Dataset and Studied APR Tools

To evaluate the first three research questions, we use Defects4J
v1.2 [20], given its widespread adoption in APR studies [21, 23,
29–32]. Defects4J v1.2 comprises 395 bugs from six open-source
software projects. To assess the generalizability of our approach in
RQ4, we extract from Defects4J v2.0 a total of 440 bugs that are
not included in Defects4J v1.2. Out of 835 bugs in Defects4J v2.0,
the 395 bugs also present in Defects4J v1.2 are excluded from the
second benchmark.

We consider all six APR tools provided by the SimAPR frame-
work: (1) TBar [31], (2) Avatar [30], (3) FixMiner [23], (4) kPar [29],
(5) Recoder [68], and (6) AlphaRepair [56]. Additionally, we in-
clude two state-of-the-art APR tools: SelfAPR [62], which uses
a neural model trained for program repair, and SRepair [57], the
latest LLM-based tool. Altogether, these eight APR tools cover the
template-based approach (TBar, Avatar, FixMiner, and kPar) and
the learning-based approach (Recoder, AlphaRepair, SelfAPR,
and SRepair), which are the two most popular approaches in recent
APR studies. The considered APR tools repair a single program loca-
tion, as is common in APR studies. The consideration of less-studied
multi-location APR tools [47, 63] is left for future work.

4.6 Experimental Environment

For each APR tool, we ran Gresino, Casino, and the original sched-
uling algorithm of the tool on the same machine. For all APR
tools except for kPar, we used a machine equipped with AMD
EPYC 2.6GHz CPUs (1024GB RAM). For kPar, we used a machine
equipped with Intel Xeon Gold 3GHz CPUs (128GB RAM). Note that
we compare the performance of each patch-scheduling algorithm
onlywithin the same machine, without conducting any cross-machine

comparisons. We used Ubuntu 22.04 LTS and Java 1.8 across all ex-
periments.

5 EXPERIMENTAL RESULTS

5.1 RQ1: Search Efficiency

Figure 5 shows the number of valid patches detected by each APR
tool on the Y-axis over the number of iterations on the X-axis;
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Figure 5: Results for RQ1 on search efficiency, shown in terms

of iterations required to find valid patches.

each iteration comprises Step 2-1 in Figure 1—i.e., patch candidate
selection—and Step 2-2—i.e., patch candidate evaluation. The results
for the three algorithms are shown: Gresino in red, Casino in
green, and the original patch-scheduling algorithm of the APR tool
in blue. The plots shown in the figure are cumulative, meaning that
the Y-axis value at each iteration point on the X-axis indicates the
total number of valid patches found up to that iteration across all
buggy versions in the benchmark. For Gresino and Casino, we
conducted 10 runs and present the mean values of the results with
95% confidence intervals (CI) illustrated as shades around the lines.
The thin shades indicate that the variance is small across the runs.
The plots in the figure show that Gresino outperforms Casino
and the original algorithms in all APR tools, except for Avatar and
SRepair where the two algorithms perform similarly.

While Figure 5 compares algorithmic performance of patch sched-
uling algorithms, it does not consider the runtime overhead. In con-
trast, Figure 6 compares the runtime performance of patch sched-
uling algorithms by accounting for the execution time. As before,
the plots are cumulative, with the Y-axis value at each time point
on the X-axis indicating the total number of valid patches found
up to that time across all buggy versions in the benchmark. For
each plot, the maximum value of the X-axis corresponds to the
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Figure 6: Results for RQ1 on search efficiency, shown in terms

of time taken to find valid patches.

Tool Overhead Tool Overhead
TBar 33.12 % AlphaRepair 10.26 %
Avatar 35.35 % Recoder 5.41 %
FixMiner 11.05 % SelfAPR 25.64 %
kPar 29.81 % SRepair 27.56 %

Table 1: Time overhead of Gresino compared to the original

patch scheduling algorithm of the APR tools.

time taken to complete 3,000 iterations. The plots in Figure 6 are
based on the same data used in Figure 5. Once again, Gresino out-
performs Casino and the original algorithms in most of the APR
tools, suggesting that the runtime overhead for Gresino’s bytecode
instrumentation and the execution of instrumented programs does
not hurt its search efficiency. Table 1 shows the time overhead of
Gresino compared to the original patch scheduling algorithm of
the APR tools.

RQ1: In six out of eight APR tools, Gresino tends to find valid

patches faster than Casino and the original algorithms, accumu-

lating more valid patches over time. In the remaining two tools,

Gresino and Casino perform similarly.
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Figure 7: Results for RQ2 on recall, shown in terms of the

number of buggy versions for which acceptable patches are

contained within the top-𝑁 valid patches.
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Figure 8: Results for RQ3 on the ablation study.

5.2 RQ2: Recall

Figure 7 shows the number of buggy versions for which acceptable
patches are contained within the top-𝑁 valid patches. The plots
are cumulative, with the Y-axis representing the total number of
buggy versions for which acceptable patches are found up to each
time point on the X-axis across all eight APR tools we consider.
The results for Gresino are shown in red, Casino in green, and the
original patch-scheduling algorithms of the APR tools in blue. For
Gresino and Casino, we conducted 10 runs and present the mean
values of the results, with 95% confidence intervals (CI) indicated
by shaded areas around the lines. We observe the following result:

RQ2: Gresino finds acceptable patches in a greater number of

buggy versions than Casino and the original patch-scheduling

algorithms of eight APR tools.

5.3 RQ3: Ablation Study

Figure 8 presents a cumulative plot that aggregates the results of
the eight APR tools. The Y-axis represents the total number of valid
patches found up to each time point on the X-axis across all buggy
versions in the benchmark and all eight APR tools. The results for
the four algorithms are shown: Gresino in red, Casino in green,
the original patch-scheduling algorithms of the APR tools in blue,
and Gresino’s variation that employs only the greybox guidance
policy in yellow. Recall that Casino uses only the blackbox guidance
policy. Among these, Gresino shows the best performance.

RQ3: Gresino performs better than its two variations, which do

not use the greybox or blackbox guidance policy, respectively. Our

results suggest that in our algorithmic setting, the search efficiency

is higher when both greybox and blackbox guidance policies are

used than when only the greybox or blackbox policy is used.
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Figure 9: Results for RQ4

5.4 RQ4: Generalizability

Figure 9 presents the search efficiency results for the 440 new bugs
in Defects4J v.2.0. As in RQ1, cumulative plots are depicted. The
following result is observed:

RQ4: Similar overall patterns are observed between the two bench-

marks.

6 DISCUSSION AND THREATS TO VALIDITY

Inspiration from Fuzzing. Similar to [21], our work is inspired
by fuzzing, in particular, coverage-guided fuzzing. The underlying
intuition of coverage-guided fuzzing is that covering more paths in
the program is likely to reveal more bugs. This is a useful intuition
because guiding the fuzzer to cover more paths can be done effec-
tively as shown in numerous works. In contrast, guiding the fuzzer
directly towards bugs is difficult, due to their sparse occurrence.
Similar to coverage-guided fuzzing, Gresino is designed based on

the intuition that the discovery of more plausible patches is likely to

increase the chance of finding a correct patch.

Just as in fuzzing, where discovering new paths does not neces-
sarily lead to new bugs, there is no guarantee that finding more “in-
teresting” patches will lead to correct patches. Nevertheless, our pre-
liminary investigation suggests a tendency for interesting patches
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to share similar behavioral characteristics with correct patches. We
compared how often interesting patches and correct (i.e., developer-
written) patches exhibited the same critical branches with the same
direction (i.e., positive or negative). We found that at the critical
branches of the interesting patches, the correct patches are about
four times more likely to exhibit the same change patterns—i.e.,
either positive or negative—than not.

When Gresino performs better than Casino. To understand
when Gresino outperforms Casino, we take a closer look at two
APR tools: FixMiner and Avatar, the best and worst performers in
our experiments, respectively. As described in § 3.2.2, Gresino can
consider program dependence information via the critical branches
shared between different patches. To investigate how often this
sharing occurs, we extract the following three values: (A) the total
number of critical branches, (B) the number of times the 𝛼 values
of the Beta distributions associated with the critical branches are
updated, and (C) the number of times the 𝛼 values of the Beta
distributions used for the blackbox guidance policy are updated
while running the Gresino algorithm. Then, we compute the ratio
between (𝐵/𝐴) and 𝐶 . This ratio is 1.87 for Avatar and 2.35 for
FixMiner, indicating that in FixMiner, the critical branches are
shared more frequently than in Avatar.

We also hypothesize that Gresino performs better when the
edges of the patch-space tree are more balanced in terms of their
probabilities of being chosen while the blackbox guidance policy
is used. We conjecture that richer information provided by the
greybox guidance policy can help with discerning more promising
edges, as discussed in § 3.2.2. To investigate this hypothesis, we
compare the entropies of the 𝛼 values of the Beta distributions used
for the blackbox guidance policy. Pearson’s moment coefficient of
skewness is used to measure the skewness of the distribution of the
entropies. In FixMiner, this coefficient is 1.77, while in Avatar, it
is 2.23. A smaller positive coefficient indicates a less right-skewed
distribution. This suggests that in FixMiner, the entropy tends to be
higher—more balanced—than in Avatar, upholding our hypothesis.
We acknowledge that the above analyses are preliminary and that
we leave a more thorough investigation for future work.

For SRepair, while using the blackbox approach of Casino
brings substantial performance improvement, employing Gresino
results in only a marginal improvement over Casino.We conjecture
that this is related to the abundant availability of interesting patches
in the patch space of SRepair. Recall that Gresino employs both
blackbox and greybox guidance policies, and the greybox guidance
policy is only selectively activated; it is more likely to be activated
when the blackbox guidance policy does not perform well. For SRe-
pair where the blackbox guidance policy already performs well,
Gresino’s greybox guidance policy is less likely to be activated,
resulting in similar performance between Gresino and Casino.

Threats to Validity. We also acknowledge the following threats
to the validity of our study. First, caution should be exercised when
generalizing our findings to other APR tools and benchmarks, al-
though to mitigate this threat, we evaluated Gresino with diverse
APR tools and benchmarks.

The second threat comes from the fact that we collected “ac-
ceptable” patches using the DiffTGen tool. While DiffTGen is
specialized for patch correctness validation, it may fail to detect

some incorrect patches. However, manually validating tens of thou-
sands of patches is likely to pose even greater threats to validity due
to human error. Acceptable patches, if they turn out to be incorrect,
can be viewed as those whose flaws are not easily detectable.

7 RELATEDWORK

We have described the closest related work, Casino [21], SeAPR [3],
and GenProg [25] in § 1, all of which can be categorized as blackbox
approaches. In contrast, Gresino uses a greybox approach. Similar
to greybox fuzzing, Gresino monitors branch hit counts during
program execution. Meanwhile, semantics-based approaches [2, 38,
39, 41, 64, 65] can be considered a whitebox approach. For example,
DirectFix [38] transforms a buggy program into a logical formula
𝜑 and then looks for a patched formula 𝜑 ′ using an SMT-solver-
based synthesizer. Other semantics-based approaches perform less
heavyweight analysis than DirectFix, but logical constraints still
play a central role in them.

Unlike Gresino, there have been some approaches to prioritize
patch candidates offline, i.e., before the search for patches starts.
Prioritization is done based on various information such as code
context [53], program contracts [43], code comments [60], Q&A
sites [11], and existing patches [18, 24, 34]. These approaches typ-
ically build a statistical model and use it to guide the search for
a valid patch. Recent deep-learning-based APR [8, 19, 27, 28, 35,
56, 57, 62, 68] can be viewed as an extension of this line of work.
Online patch-scheduling algorithms like Gresino can be used in
conjunction with these offline patch prioritization techniques.

Patch prioritization techniques can also be combined with patch-
space reduction methods. These methods exclude from the patch
space harmful patch patterns (a.k.a., anti-patterns) [48], patch pat-
terns involving intractably large search space [33], and patch can-
didates belonging to already covered test-equivalent classes [37].

Running a test-driven APR tool typically involves the repeti-
tive execution of tests. To reduce testing cost, test case prioritiza-
tion [46] (which prioritizes tests that are likely to reveal test failures
early) and regression test selection [10, 45] (which reduce the num-
ber of tests to run) have been developed and used in some APR
tools [40, 44]. These techniques are orthogonal and complementary
to Gresino.

8 CONCLUSION AND FUTUREWORK

In this paper, we have proposed a novel patch-scheduling algorithm,
Gresino. In contrast to Casino which uses only the “blackbox”
information (i.e., test results), Gresino also leverages the “greybox”
information of the program. Specifically, Gresino monitors the hit
counts of branches observed during the execution of the program
and uses them to guide the search for a valid patch. We have shown
the efficacy of Gresino through extensive experiments on the
Defects4J benchmark and eight APR tools.
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