
Autom Softw Eng (2012) 19:233–301
DOI 10.1007/s10515-011-0089-9

Efficient and formal generalized symbolic execution

Xianghua Deng · Jooyong Lee · Robby

Received: 17 May 2010 / Accepted: 3 May 2011 / Published online: 9 June 2011
© Springer Science+Business Media, LLC 2011

Abstract Programs that manipulate dynamic heap objects are difficult to analyze due
to issues like aliasing. Lazy initialization algorithm enables the classical symbolic
execution to handle such programs. Despite its successes, there are two unresolved
issues: (1) inefficiency; (2) lack of formal study. For the inefficiency issue, we have
proposed two improved algorithms that give significant analysis time reduction over
the original lazy initialization algorithm. In this article, we formalize the lazy ini-
tialization algorithm and the improved algorithms as operational semantics of a core
subset of the Java Virtual Machine (JVM) instructions, and prove that all algorithms
are relatively sound and complete with respect to the JVM concrete semantics. Fi-
nally, we conduct a set of extensive experiments that compare the three algorithms
and demonstrate the efficiency of the improved algorithms.

Keywords Symbolic execution · Operational semantics · JVM · Soundness ·
Completeness

X. Deng (�)
Pennsylvania State University at Harrisburg, Middletown, PA 17057, USA
e-mail: wdeng@google.com

Present address:
X. Deng
Google Inc., Mountain View, CA, USA

J. Lee
Korea University, Seoul, Korea
e-mail: jlee@formal.korea.ac.kr

Robby
Kansas State University, Manhattan, KS, USA
e-mail: robby@ksu.edu

mailto:wdeng@google.com
mailto:jlee@formal.korea.ac.kr
mailto:robby@ksu.edu

234 Autom Softw Eng (2012) 19:233–301

1 Introduction

Programs that manipulate dynamic heap objects (PMDHO) are notoriously difficult
to reason due to issues such as aliasing (Ramalingam 1994). In recent years, symbolic
execution (King 1976) has regained interests in checking and testing such programs.
The lazy initialization algorithm (Khurshid et al. 2003) is one of the prominent al-
gorithmic contributions that enable symbolic execution to handle PMDHO. The lazy
initialization algorithm essentially maintains a graphical representation of the heap
in the program and only materializes the parts of the heap as needed, similarly to
TVLA (Lev-Ami and Sagiv 2000). One advantage of the lazy initialization approach
is that it can be used to check complex assertions of heap structures automatically
and without requiring specific abstractions that users have to provide (in contrast to,
e.g., instrumentation predicates in TVLA).

Despite its successes in checking properties and generating test cases for PMDHO
(Visser et al. 2004; Păsăreanu and Visser 2004), there are two important issues re-
garding the previous work on the lazy initialization: (1) the algorithm is not efficient
as it performs exhaustive case splitting on object aliasing cases eagerly; (2) a formal
study on the soundness and completeness of the algorithm was not performed.

To address the inefficiency issue, we have proposed two improved lazy initializa-
tion algorithms that give orders of magnitude reductions in analysis time (Deng et al.
2006, 2007b). In this paper, we give general descriptions of the improved algorithms
as well as the formalization of the three lazy initialization algorithms as alternative
operational semantics of a core subset of Java Virtual Machine (JVM) instructions.
More specifically, the main contributions of this paper are:

– Both informal and formal descriptions of symbolic execution algorithms over heap
manipulating programs.1 We have described the three symbolic execution algo-
rithms which incorporate type variables to address an issue in the original lazy ini-
tialization algorithm (Khurshid et al. 2003) with respect to subtyping. In addition,
for each algorithm, we provide an alternative operational semantics over a core
subset of JVM instructions. Based on the formal description, we prove the rela-
tive soundness and completeness of the symbolic operational semantics in relation
to the JVM concrete operational semantics. (The definition of each relativeness is
provided in Sect. 4.3.) We believe that it is suitable to use the formal description
as a reference point when comparing symbolic execution techniques over Java-like
programs. We chose to use JVM and its instruction set instead of developing yet
another language because (1) it is realistic; (2) the semantics of each instruction
is relatively simple; (3) it contains various language features relevant for the al-
gorithms (i.e., dynamic creation of objects, type hierarchy, and subtyping); (4) it
serves as a blueprint that guided our implementation that analyzes Java bytecode.

– Kiasan2—a next generation implementation of the symbolic operational semantics
that is more robust and flexible regarding the choices of bound strategies and un-
derlying decision procedures. Given the close relation between the implementation

1This paper supersedes the preliminary versions shown in our previous work (Deng et al. 2006, 2007b).
2Kiasan means to reason with analogy or symbolically in Indonesian.

Autom Softw Eng (2012) 19:233–301 235

and the semantics, we believe that Kiasan is robust enough that it can serve as a
research vehicle for experimentation and conducting case studies.

– Extensive experimental studies that include checking structural invariants of com-
mon data structures and most containers in the java.util package, as well as some
functional properties of these data structures and algorithms. The experiments
compare the performance of the lazy initialization algorithm with the two improved
algorithms and provide a benchmark for other analysis techniques.

Organization The rest of the article is organized as follows. Section 2 describes
some background information about basic symbolic execution and the lazy initializa-
tion algorithm for handling PMDHO. Section 3 describes three vertically integrated
symbolic execution algorithms, namely, lazy, lazier, and lazier# initializations. Sec-
tion 4 formalizes each of the three algorithms as operational semantics of a core
subset of the JVM instructions and proves that these algorithms are relatively sound
and complete. Section 5 describes two experimental studies that compare the perfor-
mance of the three algorithms and provide a benchmark for other software analysis
tools on a standard set of Java examples. Section 6 describes related work, and Sect. 7
concludes.

2 Background

2.1 Symbolic execution

King (1976) proposed symbolic execution (SymExe) as a technique for program test-
ing and debugging. One key advantage of SymExe over concrete execution (e.g.,
traditional testing) is that it can reason about unknown values which are represented
as symbols (or symbolic values) instead of concrete values (e.g., integers).

Figure 1 illustrates the symbolic computation tree of the example method abs;
each tree node is a symbolic state 〈x, φ〉 consisting of a symbol or a concrete value
associated with x, and predicate φ to constrain the symbol for x. When symbolically
executing abs with no initial information about its argument, the initial state for the
abs method has a symbol α for x and the constraint φ set to TRUE (no constraint im-
posed yet). When executing line 2, the algorithm does not have sufficient information
to decide which branch to take because φ ∧ (x < 0) (i.e., the condition for the true
branch) and φ ∧ ¬(x< 0) (i.e., the condition for the false branch) are all satisfiable
under the current symbolic state—thus, both branches are explored.

Fig. 1 A symbolic execution example

236 Autom Softw Eng (2012) 19:233–301

As each branch is traversed, the constraint is augmented with a predicate corre-
sponding to the logical condition that would have caused the particular branch to
be followed. Thus, the constraint φ is often referred to as path condition because it
characterizes the conditions on variables that would be necessary for execution to
flow down a particular path. If a path condition becomes FALSE, this means that the
symbolic trace is infeasible (i.e., there is no corresponding concrete trace); thus, the
trace does not provide useful information for analyzing the behavior of the program.
Hence, such paths should be discarded. The symbolic computation tree shows that
the true branch of line 4 is always infeasible.

Role of decision procedures Decision procedures are usually employed to deter-
mine which branches to follow. As mentioned previously, as soon as a path condition
becomes unsatisfiable, it is safe to abandon the corresponding trace. This reduces the
number of paths that have to be executed (analyzed) by SymExe, thus reducing the
analysis’ time cost. In the same spirit, as soon as a path is found to violate some
property (e.g., assertion), the error can directly be reported, and SymExe can start
exploring one of the remaining paths, if any.

Termination One of the major issues with SymExe is termination. Since SymExe
does not merge state information at program join points after branches and loops,
the analysis may not terminate when the program being checked contains loops or
recursions, unless inductive predicates such as loop invariants are provided at these
loops and recursive points, as shown by Hantler and King (1976).

Bounding is usually employed to work around this problem. There are a variety of
bounding mechanisms that have been used in the literature, such as loop bounding,
depth bounding (i.e., limiting the number of execution steps), bounding on the length
of method call chains, etc. The use of these bounding mechanisms leads to an un-
derapproximation of program behavior (i.e., unsound in general). Moreover, it does
not produce a conclusive analysis report when no bugs are found because it is hard to
characterize the program behavior that has been analyzed. SymExe with bounding is,
however, still useful because it can easily check sophisticated properties that cannot
be checked by unbounded methods, and no false alarm is produced by bounding.

Path explosion Another major issue with SymExe is the path explosion problem.
Since SymExe splits paths on branch points and never merges them back, the number
of paths that SymExe explores may grow exponentially. This introduces scalability
issues when applying SymExe. Similarly to the termination issue, bounding mecha-
nisms are used to cope with this problem. On the other hand, due to the aggressive
path exploration, SymExe often achieves a high level of branch and code coverage.

2.2 Lazy initialization algorithm

The basic SymExe algorithm described so far can only analyze programs with scalar
data. The lazy initialization algorithm (Khurshid et al. 2003) is a graph-based tech-
nique that enables SymExe to handle dynamic heap.

Algorithm 1 is an excerpt of Khurshid et al. (2003) that illustrates the lazy ini-
tialization algorithm. Intuitively, lazy initialization works in the same spirit as with

Autom Softw Eng (2012) 19:233–301 237

Algorithm 1: Lazy Initialization Algorithm (an Excerpt of Khurshid et al.
(2003))

if f is uninitialized then1

if f is reference field of type T then2

nondeterministically initialize f to3

1. null4

2. a new object of class T (with uninitialized field values)5

3. an object created during a prior initialization of a field of type T6

if method precondition is violated then7

backtrack()8

if f is primitive (or string) field then9

initialize f to a new symbolic value of appropriate type10

Program 1 A Swap Example

public class Container <E> {
private E data ;

/ /@ ensures data == \ o ld (n . data) && n . data == \ o ld (data) ;
public void swap (/∗@ non_nul l @∗ / Container <E> n)
{ E e = data ; data = n . data ; n . data = e ; }

}

SymExe. That is, it starts with no knowledge of the heap structure, and it discovers
the heap structure as it symbolically executes a given program. Unknown object val-
ues are represented by special symbols. As the program executes and accesses object
fields, it “discovers” (i.e., materializes) the field values on an on-demand basis (hence
the term “lazy initialization”). When an unmaterialized field is read, if the field’s type
is a scalar type (Lines 9–10), then a fresh symbol is created for that scalar value.
Otherwise, for an unmaterialized reference field (Lines 2–8), the algorithm systemat-
ically explores all possible points-to relationships by nondeterministically choosing
among the following values for the reference: (a) NULL (Line 4), (b) a newly ma-
terialized object (Line 5), or (c) any materialized object (Line 6). Once objects are
materialized, destructive updates are done similarly as in the concrete execution.

To illustrate lazy initialization, consider the swap method of class Container
in Program 1. We use JML contracts (Leavens et al. 1998) to express the precondition
and postcondition of swap. That is, the precondition specifies that n is non-NULL,
and the postcondition specifies that the data values of this and n have been prop-
erly swapped. We use the classical assume and assert statements to support the
checking of pre- and postconditions. Essentially, we assume the precondition be-
fore the method is executed and assert the postcondition after the method. For the
example, the swap contract is transformed into assume(n != NULL); swap(n);
assert(data==\old(n.data) && n.data==\old(data));. While in-

238 Autom Softw Eng (2012) 19:233–301

Fig. 2 Lazy symbolic computation tree of the swap example and heap configurations of an example trace
(3-33-334-3341 and sibling states)

depth discussion on supporting JML checking (e.g., \old) in SymExe is interesting,
it is out of the scope of this paper. Instead, we focus on discussing the essence of lazy
initialization through the swap example.

The top part of Fig. 2 illustrates the symbolic computation tree built using lazy
initialization. To save space in the display of the tree, we represent each tree node (i.e.,
system state) by a unique label. The bottom part of Fig. 2 shows heap configurations
for some of the states in the computation tree.

To generate the computation tree of Fig. 2, SymExe begins with a nondeterminis-
tic choice of possible aliasing between the method parameter n and this reference
(i.e., states 1, 2, and 3). Note that both the next and the data fields of this and
n are unknown (i.e., unmaterialized) at these states. Out of the three cases, state 1
does not satisfy the non_null precondition for n; thus, it is not considered further.
Now, consider the subtree starting from state 3. Upon executing swap’s first state-
ment (i.e., E e = data;), the this.data field is now materialized according to
the lazy initialization algorithm described earlier; it nondeterministically chooses the
value of this.data to be: NULL (state 31), equal to this i.e., α0 (state 32), α1
(state 33), or a fresh symbolic object β0 (state 34). Let us continue on with state 33.
Upon executing swap’s second statement (i.e., data = n.data;), the algorithm
nondeterministically chooses the value of n.data to be: NULL (state 331), α0 (state
332), α1 (state 333), or a fresh symbolic object β1 (state 334). Executing swap’s last
statement (i.e., n.data = e;) at state 334 produces state 3341.

Autom Softw Eng (2012) 19:233–301 239

We have illustrated how the lazy initialization algorithm symbolically executes
the swap example following Fig. 2’s highlighted trace (i.e., trace 3-33-334-3341).
Notice that the final state 3341 satisfies the method’s postcondition since the old3

value of this.data and n.data are α1 and β1 (respectively) in states 33 and
334. Similarly, we can show that swap’s postcondition is satisfied by all final states of
the symbolic computation tree. Since the computation tree characterizes all possible
concrete executions of swap, we can conclude that the postcondition always holds.

Role of decision procedures Lazy initialization handles heap object structures di-
rectly as graphs, similarly to the heap representations in most explicit state model
checkers for object-oriented programs (Brat et al. 2000; Robby et al. 2003). Thus,
decision procedures are not used for heap objects. That is, decision procedures are
used only for scalar values as in basic SymExe. From a different point of view, one
can consider the lazy initialization algorithm as a decision procedure for object struc-
tures with case splitting on possible aliasing scenarios. The algorithm allows direct
control over heap objects allowing one to make various observations programmati-
cally, while such API to internal states of decision procedures are usually not pro-
vided (e.g., attaching monitors for symbolic heap structures are similar to attaching
monitors for concrete heap structures usually used in testing).

Termination Lazy initialization may not terminate because it can choose to always
materialize a new symbolic object; thus, it keeps expanding the heap. As with the
basic SymExe, one can use bounding mechanisms to limit the heap expansion. In
addition to bounding mechanisms described in the previous section, Khurshid et al.
(2003) used bounding on the number of objects that can be materialized for each
object type. Similar bounding mechanisms were used in Korat (Boyapati et al. 2002)
and Alloy (Jackson 2002).

Another approach is to summarize the heap structures at join points (Anand et al.
2006). While promising, the approach can only work on a predefined set of object
structures. In general, it is hard to come up with an automatic and precise heap ab-
straction mechanism that works for arbitrary kinds of complex heap properties that a
user might want to check.

Path explosion Lazy initialization potentially contributes to the path explosion
problem; in the worst case, the number of paths is exponential with respect to the
size of the heap. Bounding can be used to cope with the problem.

3 Symbolic execution algorithms in Kiasan

In this section, we will explain the intuition of the three vertically integrated sym-
bolic execution algorithms in Kiasan. The formalization of the three algorithms is
presented in Sect. 4. The first algorithm is essentially a modified version of the lazy
initialization algorithm presented by Khurshid et al. (2003). The second algorithm,

3A general mechanism to evaluate \old expressions is described in our previous work (Deng et al. 2007a).

240 Autom Softw Eng (2012) 19:233–301

called lazier initialization, significantly improves upon the lazy initialization algo-
rithm. More specifically, it reduces the size of a symbolic computation tree by in-
troducing an object abstraction. The third algorithm, lazier# initialization, improves
upon the lazier initialization algorithm by introducing another object abstraction.

3.1 Kiasan’s lazy initialization algorithm

Kiasan’s lazy initialization algorithm is adapted from the lazy initialization algorithm
described by Khurshid et al. (2003); it adds support for handling subtyping, i.e., a
symbolic object of declared type T can be an object of any subtype of T . To under-
stand the implications of the issue in SymExe and lazy initialization in particular, let
us examine Program 2.

Suppose that method isNext (Lines 4–7) is being analyzed by the lazy initializa-
tion algorithm. At line 5, there are two symbolic objects: one is this of type Node
and the other is node of type ExtendedNode. At line 6, because this.next
has not been accessed before (i.e., uninitialized), a lazy initialization will occur. If
method isNext was called at line 16, this.next would point to en of type
ExtendedNode. Therefore, the lazy initialization at line 6 should include node
of type ExtendedNode in the choosing range. This observation can be generalized as
follows. Observation 1: the choosing range of a lazy initialization of a field of type T

should include objects of subtypes of T (including T).
Further, suppose that method isNextObject in Program 2 is being analyzed

by the lazy initialization algorithm. At line 9, there are two symbolic objects, i.e.,
one for this and the other for parameter node of type Object. At line 10, a lazy
initialization takes place for this.next. It is easy to observe that this.next
should be able to point to node of type Object, given such a call at line 17. This
observation can be generalized as follows. Observation 2: the choosing range of the
lazy initialization of a field of type T should include symbolic objects of supertypes
of T since a symbolic object of supertype of T may represent any concrete object of
type T or its subtype.

The two observations are further complicated by run-time type query operations.
For example, consider method nextObjectTypeHierarchy (Lines 19–22) in
Program 2. The lazy initialization of this.next at line 21 should not include pa-
rameter node in the choosing range because it is infeasible by taking into account
the type query at line 20 (i.e., the instanceof4 operation). Therefore, the type
query operation may limit the choosing range of a lazy initialization by introducing
type constraints. Hence, after taken into account the type constraints, the two obser-
vations can be summarized as follows: the choosing range of the lazy initialization
of a field with type T should include symbolic objects of type T and supertypes of
T and subtypes of T without violating the type constraints introduced by operations
such as instanceof.

The original lazy initialization algorithm can handle the first observation (with-
out considering the type constraints) very well as it initializes an unknown refer-
ence type field of type T to any object with type T or its subtype. However, it did

4In Java, obj instanceof T returns TRUE if the type of obj is T or subtype of T . And the formal
semantics of instanceof is described in Sect. 4.

Autom Softw Eng (2012) 19:233–301 241

Program 2 An example demonstrating subtyping issue in lazy initialization algo-
rithm

1 class Node {
2 Node next ;
3 i n t data ;
4 / / @requires node != n u l l ;
5 public boolean i sNext (ExtendedNode node) {
6 return th is . next == node ;
7 }
8 / / @requires node != n u l l ;
9 public boolean i sNextObjec t (Object node) {

10 return th is . next == node ;
11 }
12 void foo () {
13 Node n1 = new Node () ;
14 ExtendedNode en = new ExtendedNode () ;
15 n1 . next = en ;
16 asser t (n1 . isNext (en)) ;
17 asser t (n1 . isNextObjec t (en)) ;
18 }
19 void nextObjectTypeHierarchy (Object node) {
20 i f (! (node instanceof Node))
21 asser t (th is . next != node) ;
22 }
23 }
24 class ExtendedNode extends Node { }

not consider the second observation and complication of type query operation (e.g.,
instanceof).5

To address this issue, we propose that each symbolic object carries a type vari-
able (i.e., a symbolic type). The type variables are constrained by the rules of the
language’s type system. For each lazy initialization of a reference type, the modified
lazy initialization algorithm checks for compatibility of types in a similar way to the
classical SymExe algorithm. That is, the algorithm maintains type constraints as well
as constraints on primitive types in the path condition.

To illustrate the type variable approach, let us revisit Program 2. When check-
ing method isNext in Program 2 at line 5, there are two symbolic objects: this
with type τ1 and node with type τ2 where τ1 and τ2 are type variables. The path
condition φ is τ1 <: Node ∧ τ2 <: ExtendedNode, where <: is the subtype re-
lation. When executing line 6, since this.next is not initialized, a lazy initial-
ization is initiated. To check whether this.next, whose declared type is Node,
can point to node whose actual type is τ2, we need to check whether τ2 <: Node
is compatible with the path condition. And in fact, it is implied by the path condi-
tion because of τ2 <: ExtendedNode <: Node and transitivity of the subtype re-
lation. Similarly, we can analyze method isNextObject correctly. At line 9, there
are two same symbolic objects as before, whereas the path condition is different:
φ = τ1 <: Node∧ τ2 <: Object. At line 10, this.next can point to node since

5It is possible to resolve the issue by performing a nondeterministic choice on the type of the object when
a parameter of reference type is first read. However, this solution does not work for any extensible type
hierarchy and furthermore is inefficient.

242 Autom Softw Eng (2012) 19:233–301

τ2 <: Node is satisfiable under the current path condition. If the path of this.next
initialized to node is chosen, then τ2 <: Node is added into the path condition. Fi-
nally, when analyzing method nextObjectTypeHierarchy, at line 21, the path
condition contains ¬(τ2 <: Node) where τ2 represents the symbolic type of param-
eter node as before. Therefore, the condition for this.next to point to node,
τ2 <: Node, contradicts the path condition, and this case is excluded as desired.

In summary, the subtyping issue is handled by the introduction of type variables
(and constraints over type variables and types) for symbolic objects.

Handling arrays Arrays present a unique challenge: the length of an array may
be unknown. In addition, arrays can be accessed by a symbolic integer index. To
address these issues, we model each array as an accumulator of indexes that have
been accessed and their corresponding values. Initially, the accumulator is empty. If
the array is accessed with an index i whose value can be either a concrete or symbolic
integer, then i is compared with the already accumulated indexes: if i is equal to one
of them, its corresponding value is returned as the array-element value; otherwise, a
fresh symbolic value is returned after being associated with i. Similarly to the lazy
initialization of fields, this cuts down the number of paths that have to be explored.
More specifically, instead of comparing the index being accessed with all the indexes
of the array (which can only be tractably done if the length of the array is bounded),
we only compare the index with what have been accessed.

The accumulator approach can be seen as an efficient procedure for implementing
the basic array theory (McCarthy 1962). Our goal is to have an algorithm that can han-
dle arrays in symbolic execution similarly to the lazy initialization algorithm which
deals with objects in symbolic execution. In addition, the accumulator approach in-
corporates practical issues such as default values and boundings.

Initial states Given a method (without loss of generality, we assume it is an instance
method), the components of initial states are initialized as follows: (1) each primitive
global and parameter is initialized to a fresh primitive symbol; (2) this is initialized
to a fresh symbol; (3) each nonprimitive global and parameter other than this is
nondeterministically initialized to NULL, a fresh symbol, or any other symbol of a
compatible type. Figure 2 shows three initial states (i.e., states 1, 2, and 3) satisfying
the above conditions.

Roles of decision procedures Since the path condition is enriched with constraints
over type variables, decision procedures that can handle type constraints are required.
Subtyping relationships can be modeled by an uninterpreted function whose reflexive,
antisymmetric, transitive properties are established via axioms with quantifications.
Alternatively, a decision procedure for partially ordered sets can be used to solve
these constraints.

In Sect. 4, we establish that the modified lazy initialization algorithm is sound and
complete with respect to the concrete execution.

3.2 Lazier initialization algorithm

As could be observed in Fig. 2, the lazy initialization algorithm may easily produce
a rather large computation tree even for a relatively simple method. In our previous

Autom Softw Eng (2012) 19:233–301 243

Algorithm 2: read(State s, Value o, Field f) : Value

if o is a symbolic object and f is uninitialized then1

if f is reference type T then2

nondeterministically initialize f to3

1. null;4

2. a new symbolic location of type T5

if f is primitive field of type T then6

o.f ← a new symbolic value of type T7

if o is a symbolic location then8

o′ ← nondeterministically choose among9

1. a new symbolic object with all fields undefined10

2. an existing symbolic object with a compatible type
return read(s[o/o′], o′, f)11

return o.f ;12

paper (Deng et al. 2006), we introduced an optimized algorithm dubbed lazier ini-
tialization based on the observation that when an uninitialized reference type field is
first read, it is often unnecessary to know which object the field refers to, and only
a notion of object existence is enough. For example, when symbolically executing
statement return o.f == null;, it is enough to know whether o.f is NULL

(or not) without having to precisely know which object it refers to.
Based on the observation, we introduce an abstract value which we call a sym-

bolic (heap) location. A symbolic location represents a set of all the type-compatible
objects in the heap. We denote a symbolic location by a ˆ-accented symbol. Thus,
we now have two abstraction levels of objects available for the lazier initialization
algorithm, i.e., symbolic objects and symbolic locations.

Algorithm 2 shows how lazier initialization makes use of the new abstraction.
When an uninitialized reference type field of a symbolic object is read (Lines 2–5),
the field is lazier-ly initialized to either NULL or a fresh symbolic location whose
type is set to be the same as the field’s type. Primitive type fields are, on the other
hand, handled the same way as in the lazy initialization algorithm (Lines 6–7). In
the case where the receiver is a symbolic location (Lines 8–12), first, this symbolic
location is nondeterministically substituted by either one of existing type-compatible
objects or a fresh symbolic object. Then, the algorithm is called recursively to trigger
lazy initialization.

The effects of the lazier initialization are: (1) delaying the nondeterministic se-
lection of objects in the lazy initialization algorithm, and (2) object selection may
not be needed in some cases. Both effects contribute to smaller sizes of computation
trees and therefore provide significant performance gains in practice, as shown by the
experimental data in Sect. 5.

Initial states Given a method (without loss of generality, we assume it is an instance
method), the components of initial states are initialized as follows: (1) each primitive

244 Autom Softw Eng (2012) 19:233–301

Fig. 3 Lazier symbolic computation tree of the swap example and heap configurations of an example
trace (2-22-223-2231 and sibling states)

global and parameter is initialized to a fresh primitive symbol; (2) each nonprimitive
global and parameter other than this is nondeterministically initialized to NULL or
a fresh symbolic location; (3) the implicit parameter this is initialized to a fresh
symbolic location.

Example To illustrate the lazier initialization algorithm, let us reconsider the swap
example in Program 1. The top portion of Fig. 3 illustrates the symbolic computation
tree that can be obtained by the lazier initialization. The highlighted path of the tree
corresponds to its counterpart of the lazy computation tree, shown in Fig. 2.

Similarly to the lazy initialization algorithm, the lazier initialization algorithm
starts with a nondeterministic choice. Note that, however, there is one less state than
in the lazy initialization. This is because two initial states, states 2 and 3 of Fig. 2, are
abstracted into state 2 of Fig. 3.

When α̂0’s data field is read at swap’s first statement (i.e., E e = this.
data;), α̂0 is replaced with a fresh symbolic object α0 because there is no sym-
bolic object yet in the heap. In addition, α0’s data field is initialized to either NULL

(state 21) or a fresh symbolic location β̂0 (state 22). At state 22, there are three
possible choices when executing swap’s second statement (i.e., this.data =
n.data;). Symbolic location α̂1, referred to by n, can be replaced with either the
only existing symbolic object α0 or a fresh symbolic object α1. In the former case,
the data field has already been initialized (state 221). In the latter case, α1’s data
field is “lazier-ly” initialized to either NULL (state 222) or a fresh symbolic location
β̂1 (state 223). Executing swap’s last statement (i.e., n.data = e;) at state 223
produces state 2231. Notice that state 2231 in Fig. 3 safely approximates state 3341
in Fig. 2.

Autom Softw Eng (2012) 19:233–301 245

As can be observed, the computation tree in Fig. 3 is considerably smaller than
the one in Fig. 2. As mentioned earlier, this is because the nondeterministic ob-
ject selection is delayed, and the selection sometimes is omitted, as is the case of
this.data and n.data. Moreover, it can also be observed that all the post-
states still satisfy swap’s postcondition (i.e., this.data==\old(n.data) &&
n.data==\old(this.data)).

In Sect. 4, we establish that the lazier initialization algorithm is sound and com-
plete with respect to the lazy initialization and the concrete execution.

3.3 Lazier# initialization algorithm

We further observed that the size of a lazier computation tree can be reduced in some
cases. For example, in the lazier computation tree (Fig. 3) of the swap example,
the distinction between states 21 and 22 is unnecessary because the fact whether
or not this.data is NULL does not affect the validity of the given postcondition.
In general, the lazier initialization algorithm initializes an uninitialized reference type
location to either NULL or a fresh symbolic location upon access. It is, however, more
efficient to defer the nullity decision until this information is necessary (unless non-
nullness is assumed by default as in JML). Based on this observation, we developed
an even lazier algorithm that we named lazier# initialization (Deng et al. 2007b).

In the lazier# initialization algorithm, we introduce one more abstract value, sym-
bolic reference. A symbolic reference represents a set consisting of NULL and all
the type-compatible objects in the heap. Recall that a symbolic location introduced
previously does not represent NULL. We denote a symbolic reference by a ¯-accented
symbol to distinguish it from a symbolic location denoted by a ˆ-accented symbol.
Overall, we use the following three abstraction levels of objects for the lazier# ini-
tialization algorithm: (1) symbolic objects as the lowest (finest) level of abstraction,
(2) symbolic locations, and (3) symbolic references as the highest (coarsest) level of
abstraction.

The lazier# initialization algorithm shown in Algorithm 3 distinguishes three
different cases depending on how far the abstraction is progressed. For case 1
(Lines 1–5) where the receiver is a symbolic object and the field f is uninitialized, if
the field type is of reference, the field is lazier#-ly initialized to a symbolic reference.
Notice that the nondeterministic selection between NULL and a non-NULL value does
not take place any more. For case 2 (Lines 6–10) where the receiver is a symbolic lo-
cation, the receiver is replaced with a symbolic object. As in the case of the lazier
initialization, this symbolic object substitute is chosen nondeterministically among a
fresh symbolic object and the type-compatible symbolic objects existing in the heap.
Then the algorithm proceeds recursively with the substitute. For case 3 (Lines 11–15)
where the receiver is a symbolic reference, the receiver is replaced with either a fresh
symbolic location or NULL. As case 2, the algorithm proceeds recursively with the
substitute. Note that this case can be further optimized by omitting the NULL case if
the receiver is known to be non-NULL.

Initial states Given a method (without loss of generality, we assume it is an instance
method), the components of initial states are initialized as follows: (1) each primitive

246 Autom Softw Eng (2012) 19:233–301

Algorithm 3: read(State s, Value o, Field f) : Value

if o is a symbolic object and f is uninitialized then1

if f is reference type T then2

o.f ← a fresh symbolic reference of type T3

if f is primitive field of type T then4

o.f ← a fresh symbolic value of type T5

if o is a symbolic location then6

o′′ ← nondeterministically choose among7

1. a fresh symbolic object with all fields undefined8

2. an existing symbolic object of a compatible type9

return read(s[o/o′′], o′′, f)10

if o is a symbolic reference then11

o′ ← nondeterministically choose between12

1. a fresh symbolic location13

2. NULL;14

return read(s[o/o′], o′, f)15

return o.f16

global and parameter is initialized to a fresh primitive symbol; (2) each nonprimitive
global and parameter other than this is initialized to a fresh symbolic reference or
a fresh symbolic location if it is known to be non-NULL; (3) the implicit parameter
this is initialized to a fresh symbolic location.

Example To illustrate the lazier# initialization algorithm, let us revisit the swap ex-
ample. The top left corner of Fig. 4 illustrates the symbolic computation tree that can
be obtained by the lazier# initialization. The highlighted path of the tree corresponds
to its counterparts shown earlier in Figs. 2 and 3.

The algorithm starts with a single state (i.e., state 1) where this and n refer
to distinct symbolic locations reflecting the fact that n is specified as non-NULL in
Program 1, and this must always be non-NULL.

When α̂0’s data field is read at swap’s first statement (i.e., E e = this.
data;), α̂0 is replaced with a fresh symbolic object α0, and its data field is ini-
tialized to a fresh symbolic reference β̄0 (state 11). On executing swap’s second
statement (i.e., this.data = n.data;), α̂1 is replaced with either the solely
existing symbolic object α0 or a fresh symbolic object α1. In the former case, α0’s
data field has already been initialized (state 111). In the latter case, α1’s data
field is initialized to a fresh symbolic reference β̄1 (state 112). Executing swap’s last
statement (i.e., n.data = e;) at state 112 produces state 1121.

It can be observed in Fig. 4 that the states are more abstract compared to the
previous two algorithms. It can also be checked that all the post-states still sat-
isfy swap’s postcondition (i.e., this.data==\old(n.data) && n.data==
\old(this.data)).

Autom Softw Eng (2012) 19:233–301 247

Fig. 4 Lazier# symbolic computation tree of the swap example and heap configurations of an example
trace (1-11-112-1121 and sibling states)

As with the lazy and lazier initialization algorithms, the lazier# initialization algo-
rithm is also sound and complete with respect to the concrete execution, as described
in Sect. 4.

Optimality Our experimental data in Sect. 5 confirms that the lazier# algorithm is
significantly faster than the lazier algorithm when analyzing complex data structures.
Furthermore, by using the case counting analysis (Deng et al. 2010), we demonstrated
that the lazier# algorithm is case-optimal with respect to nonisomorphic cases of
several complex data structures (Deng et al. 2010). That is, it does not generate heap
shapes that are overly concrete and overly abstract—the number of the nonisomorphic
cases of heap configurations that the algorithm generates matches exactly the number
of cases produced by using the case counting analysis technique.

3.4 Bounding strategies in Kiasan

To address the termination and path explosion issues, we incorporate two bound-
ing techniques to help curb SymExe’s complexity. The first technique is k-bounding,
which bounds the length of each sequence of lazy/lazier/lazier# initializations origi-
nating from each initial symbolic object up to k. In other words, we bound the length
of materialization (reference) chains on symbolic objects. For arrays, we additionally
bound the number of lazy initializations on distinct array indexes up to k. The sec-
ond bounding technique is n-bounding, which bounds the number of objects of each
(instantiable) type up to n.

These two user-adjustable bounding strategies provide a fair trade-off between
analysis cost and behavioral coverage; in contrast to previously discussed bounding
strategies, we can quantify the amount of coverage on heap objects for a given k/n
bound. That is, when using a bound k/n, the analysis can guarantee the correctness
of a program on any heap object configuration (satisfying its contract) with reference
chains whose lengths are at most k or the number of objects of each type at most n.
In the case where the analysis does not exhaust k/n, a complete behavior coverage is
guaranteed (i.e., fully sound).

248 Autom Softw Eng (2012) 19:233–301

The two bounding techniques can be combined, for example, the length of ref-
erence chains up to 3 and the number of object of java.lang.Object up to 4. We can
view the combined bounding technique as a pair (k, n) which bounds the lengths of
reference chains up to k and the numbers of objects of each type up to n. The k-bound
and n-bound can be seen as special cases of the combined bounding technique, more
specifically, as (k,+∞) and (+∞, n), respectively.

To handle diverging loops, we limit the number of loop iterations (loop-bound)
that do not (lazily) initialize any heap object, i.e., we prefer exhausting the k or n-
bound first before resorting to loop bound to try to guarantee the advertised heap
object configuration coverage. Similarly, we also limit the length of method call chain
to handle recursions.

3.5 Interprocedural and modular analysis in Kiasan

In the case where the program unit N being analyzed invokes a method M , there
are two general approaches that are offered in Kiasan: (1) invoke M similarly to a
regular concrete program execution (interprocedural analysis), and (2) replace M

with a model or its contracts (modular analysis). These two approaches described
next are orthogonal to the central topic of this paper, thus, we only give high-level
and intuitive descriptions below.

One challenge in the interprocedural analysis is handling dynamic dispatch of (in-
stance) methods in Java. That is, when N makes a call to M of a class C, it does
not necessarily mean that M will actually be called. Instead any method overriding
M in the subtypes of C might be called. In a concrete execution, this is not a prob-
lem because it knows what the runtime type of the receiver object being used for the
method invocation is. However, in Kiasan, the receiver type represents a base type C

and all of its subtypes satisfying the path condition. Thus, in general, Kiasan does not
know exactly which method to call. One strategy is to consider all possible overriding
methods, but this may be too costly if there are many such overriding methods. An-
other strategy is to use one or a subset of the overriding methods, but this makes the
analysis to miss bugs that are caused by other overriding methods not included in the
analysis; thus, care must be taken to interpret such analysis result. In both strategies,
when one of M’s overriding method is used, say from type C′, the path condition
is enhanced with the new knowledge that the receiver object is now a subtype of C′
(and not a subtype of any C′′, where C′′ <: C′ and C′′ declares an overriding method,
if any).

Regardless of which strategy is picked, the analysis result becomes stale if the
class hierarchy is modified or the overriding methods are modified. In such cases,
the program has to be re-analyzed. To address this issue, Kiasan offers two mod-
ular strategies. The first strategy is allowing the user to replace M with a model
method M ′. Intuitively, M ′ should approximate the behavior of M . However, if the
approximation is inaccurate, it may produce false alarm (overapproximation), or it
may miss bugs (underapproximation). Thus, care must be taken when creating such
model method considering the properties that a user intends to check. A more system-
atic strategy is to replace M with its contracts (e.g., JML). The method contracts are
first translated to effective (e.g., by including class invariants) and executable forms.

Autom Softw Eng (2012) 19:233–301 249

The invocation of M is then substituted by the following: assertion of M’s precondi-
tion, assigning fresh symbolic values to modified variables, and assumption of M’s
postcondition. Intuitively, assigning fresh symbolic values to modified variables has
the effect of making their values unknown, while they are constrained by assuming
M’s postcondition.

4 Formalization

In this section, we formalize each of the three SymExe algorithms presented in Sect. 3
as an alternative operational semantics of a core subset of the JVM instructions, and
prove their relative soundness and completeness6 based on the semantics of JVM con-
crete execution. Note that the semantics of JVM concrete execution closely follows
the standard definition of JVM semantics and serves as a reference basis. The reasons
that we formalize the algorithms on the JVM instructions, also known as bytecode,
instead of Java source code are:

1. A Java program ultimately runs as a form of bytecode. And bytecode has simpler
semantics, and thus it is easier to be formalized;

2. There is no need to be concerned about source-level compilation (e.g., syntactic
sugars), and optimizations;

3. The same formalization can be applied to other languages that can be compiled
into Java bytecode (e.g., Python/Jython, Ruby/JRuby, and Scala), and also can be
easily adapted to similar systems such as .Net (CLI 2006).

To simplify the presentation, we put three limits on this formal study. First, we
focus on single-threaded programs with method calls abstracted away per discus-
sion in the previous section. Second, we assume that bytecode satisfies all static
and structural constraints described in Sect. 4.8 of the JVM specification (Lind-
holm and Yellin 1999). Some of the most important constraints are: (1) the operand
stack always contains correct numbers and types of operands; (2) for each instruc-
tion, the types of the all parameters are correct; (3) field accesses are all legal—
private, protected, or public. Third, we provide semantic rules and proofs only
for a representative subset of the JVM instructions for the clarity of the presen-
tation (while still conveying the main idea of our approach), since there are more
than 200 JVM instructions, and many of them share very similar semantics whose
only difference is often operand types (e.g., the JVM has different instructions for
adding integers and floating numbers). More precisely, the chosen JVM instructions
are getfield, aload, astore, iadd, isub, new, putfield, anewarray,
iastore, iaload, instanceof, checkcast, if_icmplt, if_acmpeq,
ifnull, and ifnonnull.

The rest of this section is organized as follows. Sections 4.1 and 4.2 present the
operational semantics of bytecode for concrete execution, SymExe with lazy initial-
ization (SEL), SymExe with lazier initialization (SELA), and SymExe with lazier#
initialization (SELB). Section 4.3 shows a proof outline of the relative soundness and
completeness of SEL, SELA, and SELB using the concrete execution as the basis.

6The meaning of relativeness is provided in the beginning of Sect. 4.3.

250 Autom Softw Eng (2012) 19:233–301

List 1 Domains (denotes disjoint union and ⇀ denotes partial function)
– PType, the set of primitive types, consisting of INT, FLOAT, etc.
– AType, the set of array types.
– RType, the set of record types.
– SymType, the set of symbolic types.
– NPType = RType 	 AType 	 SymType, the set of nonprimitive types.
– τ ∈ Type = PType 	 NPType.
– c ∈ Const, the set of constants including N, TRUE, FALSE, NULL, etc.
– ISymbol, the set of integer symbols.
– PSymbol, the set of primitive symbols, including ISymbol.
– l ∈ Loc, the set of locations to model heap addresses.
– α̂ ∈ SymLoc, the set of symbolic locations.
– ᾱ ∈ SymRef, the set of symbolic references.
– f ∈ Field, the set of fields including LEN, DEF, CONC, etc.
– i ∈ Index = Field 	 N 	 ISymbol, the set of indexes.
– NPSymbol = {ατ | ατ : Index ⇀ Value }, the set of nonprimitive symbols.
– α,β ∈ Symbol = PSymbol 	 NPSymbol, the set of symbols.
– Global = {g | g : Field ⇀ Value }, the set of globals.
– pc ∈ PC, the set of program counters.
– Local = { ξ | ξ : N ⇀ Value }.
– Stack = {ω | ω : Seq(Value) } is the set of operand stacks which are modeled by

sequences of values.
– Heap = {h | h : Loc ⇀ NPSymbol }.
– φ ∈ 	, the set of boolean expressions.
– σ ∈ State = Global × PC × Local × Stack × Heap × 	. Statec ⊆ States ⊆

Statea ⊆ Stateb = State represent state domains in concrete JVM, SEL, SELA,
and SELB, respectively.

– Instr, the set of bytecode instructions with additional assert and assume in-
structions.

4.1 Semantic domains

The semantic domains are listed in List 1. Following the Java type system, we distin-
guish two kinds of types: primitive types (PType) and nonprimitive types (NPType).
NPType is further divided into record types (RType) that denotes the types of ob-
jects, array types (AType), and symbolic types (SymType) which are used to model
the variable types of symbolic objects.

Similarly to types, we distinguish primitive symbols (PSymbol) and nonprimitive
symbols (NPSymbol). NPSymbol models objects and arrays as partial functions. In
the lazy initialization, an undefined mapping represents an uninitialized field or array
index. We use NPSymbol for concrete execution as well, and in this case, all the
mappings of fields or array indexes are defined. More precisely,

– for each object, we use a function from Field to Value. Notice that Field includes
a special field, CONC, which is used to distinguish whether an object is concrete
or symbolic. More specifically, CONC is defined for all concrete objects and un-

Autom Softw Eng (2012) 19:233–301 251

defined for symbolic objects. We say an object is concrete if it was created by an
allocation instruction (i.e., the new instruction); a symbolic object is a parameter
or discovered lazily as informally described in the previous section.

– for each array, we use a function from N	 ISymbol	{LEN, DEF, CONC} to Value,
where each α ∈ ISymbol models a symbolic index. LEN and DEF are special fields
that are mapped to the array length and the default value of an array, respectively.
Another special field CONC is used in a similar way to the case of an object.

Note that each symbol in Symbol, symbolic location, symbolic reference, and
field carries its type as a subscript and the type may be omitted when it is not impor-
tant.

The state components of the JVM are customized as follows. The static fields
are modeled as global variables (Global). The heap and local variables are modeled
as partial functions from locations (Loc) to NPSymbol (i.e., Heap), and from N

to Value (i.e., Local), respectively. An operand stack is modeled as a sequence of
values (i.e., Stack). We use a single PC register and a single stack frame because
we limit the scope of this formal study to single-threaded programs without method
calls. The native method stacks are not modeled since we do not consider native code
in this study. We add path condition φ to the state to facilitate SymExe. We model a
path condition as a conjunctive set of formulas to reflect the fact that constraints are
accumulated in each SymExe path.

Based on these customized elements, our formal JVM system maintains a state
of the following signature: Global × PC × Local × Stack × Heap × 	. Notice that
we use the same state signature for the concrete execution (Statec), SEL (States),
SELA (Statea), and SELB (Stateb). The differences between them are mainly made,
as explained earlier, by using additional nonprimitive values such as symbolic loca-
tions and symbolic references. Although a path condition is not absolutely neces-
sary for concrete execution, we make use of it to indicate whether a certain oper-
ation is valid or not by restricting a path condition to either TRUE or FALSE. Sec-
tion A.2 shows an example about how states can be formulated in SEL, SELA, and
SELB.

The initial states of concrete execution, SEL, SELA, and SELB are different as
well. The most prominent difference lies in the initial heap. Nonprimitive globals
and locals, refer to distinct symbolic references in the case of SELB, distinct sym-
bolic locations or NULL in the case of SELA, or nonprimitive symbols or NULL in
the case of SEL and the concrete execution. Notice that in SEL and concrete exe-
cution, nonprimitive symbols do not have to be distinct (i.e., they can have alias-
ings). In the case of SEL, we use nonprimitive symbols whose fields and indexes
are not initially mapped, whereas all fields and indexes are mapped in concrete ex-
ecution. If a nonprimitive symbol is referred by a variable (either global or local) in
SEL, its type (which is a symbolic type) should be a subtype of the variable type,
and this constraint resides in the initial path condition. In other semantics, the ini-
tial path conditions are set to TRUE. The rest of the initial state components are
similar to each other regardless of the different semantics: primitive variables are
initialized to distinct primitive symbols except for the concrete execution; the ini-
tial program counter points at the starting point of the method; the initial stack is
empty.

252 Autom Softw Eng (2012) 19:233–301

4.2 Semantic rules

We use the following format of operational semantic rules:

premises

σ ⇒C/S/A/B σ1[‖ σ2] | EXCEPTION, σ3[‖ σ4]|ERROR, σ5[‖ σ6]
The premises part contains the current bytecode instruction to be executed, and

the consequent part shows how the current state denoted by σ is transformed into the
end state(s) by the current bytecode. Either C, S, A, or B is subscripted on ⇒ to in-
dicate the rule is in either the concrete execution, SEL, SELA, or SELB, respectively.
The end states (separated by ‖) can be either normal, exceptional, or erroneous. An
exceptional or erroneous end state is prefixed with EXCEPTION or ERROR, respec-
tively. Exceptions are handled according to the JVM specification (Lindholm and
Yellin 1999) and the execution is stopped if an error occurs. Also, the execution
is terminated/ignored when the path condition becomes unsatisfiable. For simplicity,
we assume that garbage collection is performed against unreachable concrete objects,
i.e., nonprimitive symbols whose CONC field is defined, after every transition.

We name semantic rules in the format of xxxx[#]-C/S/A/B where xxxx corre-
sponds to an instruction name. If there is more than one rule for the same instruction,
we distinguish them by number labels. If there is more than one rule whose premises
hold true, one of them is applied nondeterministically. The last letter, C, S, A, and B,
indicates the semantical rules is first defined for the semantics of concrete execution,
SEL, SELA, and SELB, respectively. To facilitate the definition of semantic rules, we
define some auxiliary functions, shown in List 2.

4.2.1 Semantic rules for instruction getfield

Instruction getfield f reads the f field of the receiver. It is the most interesting
instruction because the lazy initialization takes place when an undefined field is read.
Figure 5 lists the semantic rules for the getfield instruction where we use the
binding, σ = (g,pc, ξ,ω,h,φ). We also use notation h[f �→ v] for the update of
heap h. More precisely, h[f �→ v](f ′) = h(f) if f ′ �= f ; and v, otherwise. While
the concrete execution semantics is defined as usual by GETFIELD1-C and 2-C, it
would be more interesting to compare them with SymExe rules.

If the field is undefined, SEL lazily initializes a nonprimitive field to either
NULL (GETFIELD3-S), one of type compatible nonprimitive symbols in the heap
(GETFIELD4-S), or a fresh nonprimitive symbol representing an array or an object
(GETFIELD5-S, GETFIELD6-S). A primitive field is initialized to a fresh primitive
symbol (GETFIELD2-S). Otherwise, the existing value is returned if the field was al-
ready defined (GETFIELD1-S), and a NullPointerException is thrown if the
receiver is NULL (GETFIELD7-S).

SELA, on the other hand, lazily initializes a nonprimitive field to a fresh symbolic
location (GETFIELD3-A). This rule supersedes three SEL rules about lazy field ini-
tializations, i.e., GETFIELD4-S, 5-S, and 6-S. Since it is still possible to initialize an
uninitialized field to NULL in SELA, GETFIELD3-S remains to be used. Likewise,

Autom Softw Eng (2012) 19:233–301 253

List 2 Auxiliary functions (↓= defined, ↑= undefined)
– default : Type → Value = λτ.v,where v is the default value of τ , returns the de-

fault value.
– fields : Type → P (Field) = λτ.{fτ ′ | fτ ′ is a field in τ } returns the fields of a given

type.
– <: : NPType × NPType → Boolean = λ(τ, τ ′).(τ is a subtype of τ ′) (We use the

function as an infix operator, for example, τ <: τ ′).
– acc-idx : NPSymbol → P (N ∪ ISymbol) = λα. { i ∈ N ∪ ISymbol | α(i)↓} re-

turns integral indexes of a non-primitive symbol.
– collect : Heap → P (Loc) = λh. { l ∈ domh | h(l)(CONC) ↑} returns locations that

map to symbolic objects.
– symbols : State → P (Symbol) = λσ. {α | α appears in σ } returns the set of all

symbols in a state.
– sym-locs : State → P (SymLoc) = λσ.{ α̂ | α̂ appears in σ } returns the set of all

symbolic locations in a state.
– sym-refs : State → P (SymRef) = λσ. { ᾱ | ᾱ appears in σ } returns the set of all

symbolic references in a state.
– new-prim-sym : PType × P (Symbol) → PSymbol = λ(τ,S).ατ ,ατ �∈ S returns a

new primitive symbol.
– new-sym-type : P (Symbol) → SymType = λS.τ s.t. τ ∈ SymType and τ does not

appear in S, returns a new symbolic type.
– array-type : Type → AType = λτ.τ ′, where τ ′ is the array type with element

type τ , returns a new array type.
– new-sym : P (Symbol) → NPSymbol = λ(S).ατ , s.t. α /∈ S ∧ τ = new-sym-

type(S) ∧ ∀i ∈ Index.α(i)↑, returns a new symbolic record.
– new-sarr : P (Symbol) → NPSymbol = λ(S).new-sym(S ∪ {α})[LEN �→ α],

where α = new-prim-sym(INT,S), returns a new symbolic array.
– new-obj : P (Symbol) × RType → NPSymbol = λ(S, τ).ατ , s.t. ατ �∈ S ∧ ∀fτ ′ ∈

fields(τ).α(fτ ′) = default(τ ′) ∧ α(CONC) ↓, returns a new concrete object.
– new-arr : P (Symbol) × Type × (N 	 ISymbol) → NPSymbol = λ(S, τ, v).ατ ′ ,

s.t. ατ ′ �∈ S ∧ τ ′ = array-type(τ) ∧ domα = {DEF, LEN, CONC} ∧ α(DEF) =
default(τ) ∧ α(LEN) = v, returns a new concrete array.

– new-carr : P (Symbol) × Type × N → NPSymbol = λ(S, τ,m).ατ ′ , s.t. ατ ′ �∈ S ∧
τ ′ = array-type(τ) ∧ ∀0 ≤ j < m.ατ ′(j) = default(τ) ∧ ατ ′(LEN) = m, returns a
new concrete array in concrete JVM semantics.

– code : PC ⇀ Instr which takes a program counter and returns the corresponding
instruction that is pointed by the program counter.

– next : PC ⇀ PC = λpc.pc′, where pc′ is the address of the instruction that is next
to the instruction pointed by pc, returns the next program counter.

GETFIELD1-S, 2-S, and 7-S remain used in SELA. If the receiver is a symbolic loca-
tion, it is necessary to resolve this symbolic location to either one of type compatible
nonprimitive symbols in the heap (GETFIELD1-A) or a fresh nonprimitive symbol
(GETFIELD2-A).

254 Autom Softw Eng (2012) 19:233–301

GETFIELD1-C
code(pc) = getfield f ω = l ::ω′

σ ⇒C (g,next(pc), ξ, h(l)(f)::ω′, h, TRUE)

GETFIELD2-C
code(pc) = getfield f ω = NULL ::ω′

σ ⇒C NullPointerException, (g,pc, ξ,ω,h, TRUE)

GETFIELD1-S
code(pc) = getfield fτ ω = l ::ω′ h(l)(fτ)↓

σ ⇒S (g,next(pc), ξ, h(l)(fτ)::ω′, h,φ)

GETFIELD2-S
code(pc) = getfield fτ ω = l ::ω′ h(l)(fτ)↑ τ ∈ PType

σ ⇒S (g,next(pc), ξ,α ::ω′, h[l �→ h(l)[f �→ α]], φ)

where α = new-prim-sym(τ, symbols(σ))

GETFIELD3-S
code(pc) = getfield fτ ω = l ::ω′ h(l)(fτ)↑ τ ∈ NPType

σ ⇒S (g,next(pc), ξ, NULL ::ω′, h[l �→ h(l)[f �→ NULL]], φ)

GETFIELD4-S
code(pc) = getfield fτ ω = l ::ω′ h(l)(fτ)↑ τ ∈ NPType

σ ⇒S (g,next(pc), ξ, l′ ::ω′, h[l �→ h(l)[f �→ l′]], φ ∪ {τ ′ <: τ })
where l′ ∈ collect(h),ατ ′ = h(l′)

GETFIELD5-S
code(pc) = getfield fτ ω = l ::ω′ h(l)(fτ)↑ τ ∈ AType

σ ⇒S (g,next(pc), ξ, l′ ::ω′, h[l �→ h(l)[f �→ l′]][l′ �→ ατ ′],
φ ∪ {τ ′ <: τ,α(LEN) ≥ 0})

where ατ ′ = new-sarr(symbols(σ)), l′ �∈ domh

GETFIELD6-S
code(pc) = getfield fτ ω = l ::ω′ h(l)(fτ)↑ τ ∈ RType

σ ⇒S (g,next(pc), ξ, l′ ::ω′, h[l �→ h(l)[f �→ l′]][l′ �→ ατ ′], φ ∪ {τ ′ <: τ })
where ατ ′ = new-sym(symbols(σ)), l′ �∈ domh

GETFIELD7-S
code(pc) = getfield fτ ω = NULL ::ω′
σ ⇒S NullPointerException, (g,pc, ξ,ω,h,φ)

GETFIELD1-A
code(pc) = getfield f ω = α̂τ ::ω′

σ ⇒A (g,pc, ξ,ω,h,φ ∪ {τ ′ <: τ })[l/α̂] where l ∈ collect(h),h(l) = ατ ′

GETFIELD2-A
code(pc) = getfield f ω = α̂τ ::ω′

σ ⇒A (g,pc, ξ,ω,h[l �→ ατ ′], φ ∪ {τ ′ <: τ })[l/α̂]
where l /∈ domh,ατ ′ = new-sym(symbols(σ))

GETFIELD3-A
code(pc) = getfield fτ ω = l ::ω′ h(l)(fτ)↑ τ ∈ NPType

σ ⇒A (g,next(pc), ξ, α̂τ ::ω′, h[l �→ h(l)[fτ �→ α̂τ]], φ)

where α̂ is fresh

GETFIELD1-B
code(pc) = getfield f ω = ᾱτ ::ω′

σ ⇒B σ [NULL/ᾱ]

GETFIELD2-B
code(pc) = getfield f ω = ᾱτ ::ω′

σ ⇒B σ [α̂τ /ᾱτ] where α̂ is fresh

GETFIELD3-B
code(pc) = getfield fτ ω = l ::ω′ h(l)(fτ)↑ τ ∈ NPType

σ ⇒B (g,next(pc), ξ, ᾱτ ::ω′, h[l �→ h(l)[fτ �→ ᾱτ]], φ)

where ᾱ is fresh

Fig. 5 Rules for the getfield instruction

Autom Softw Eng (2012) 19:233–301 255

IALOAD1-S
code(pc) = iaload ω = i ::l ::ω′

σ ⇒S ArrayIndexOutOfBoundsException,

(g,pc, ξ,ω,h,φ ∪ {i < 0 ∨ i ≥ h(l)(LEN)})

IALOAD2-S
code(pc) = iaload ω = i ::l ::ω′

σ ⇒S (g,next(pc), ξ,α(i′)::ω′, h,φ ∪ {i = i′})
where α = h(l), i′ ∈ acc-idx(α)

IALOAD3-S
code(pc) = iaload ω = i ::l ::ω′

σ ⇒S (g,next(pc), ξ, v ::ω′, h[l �→ α[i �→ v]], φ ∪ { i �= i′ | i′ ∈ I }
∪ {0 ≤ i, i < α(LEN), |I | < α(LEN)})

where α = h(l), I = acc-idx(α),

v =
{

α(DEF) if α(DEF)↓
new-prim-sym(INT, symbols(σ)) if α(DEF)↑

IALOAD4-S
code(pc) = iaload ω = i ::NULL ::ω′

σ ⇒S NullPointerException, (g,pc, ξ,ω,h,φ)

Fig. 6 Rules for the iaload instruction in SEL

Finally, SELB initializes a nonprimitive field to a fresh symbolic reference in-
stead of a symbolic location (GETFIELD3-B). This rule supersedes all the previous
rules about lazy initializations of fields, i.e., GETFIELD3-A, GETFIELD3-S, 4-S,
5-S, and 6-S. Notice that GETFIELD3-S is also superseded by GETFIELD3-B, unlike
in SELA. This difference results in the nullness branching delay. On the other hand, if
the receiver is a symbolic reference, it is necessary to resolve this symbolic reference
to either NULL (GETFIELD1-B) or a fresh symbolic location (GETFIELD2-B).

4.2.2 Semantic rules for array accessing instructions in SEL

Instruction iaload is used to access an index of an integer array, and its semantic
rules in SEL are shown in Fig. 6. As explained in Sect. 3.1, for the nonexceptional
accessing (index within the bounds and the array is not NULL), there are two cases:
the accessing index is either equal to one of indexes used before or different from
each of those indexes. In the former case, the element value at the chosen index that
is assumed to be equal to the current index is returned, and the path condition is
updated with the equality relation between that chosen index and the current index
(IALOAD2-S). In the latter case, the array is updated with a new mapping from the
current index to a fresh value (IALOAD3-S). This fresh value can be either a con-
crete default value or a symbolic one depending on whether the array is concrete or
symbolic. The path condition is also updated to record the fact that the current index
is not equal to any of the previously accessed indexes.

If the index is out of bounds or the array is NULL, an IndexOutOfBounds-
Exception or a NullPointerException is thrown, as shown in IALOAD1-S
and IALOAD4-S, respectively.

256 Autom Softw Eng (2012) 19:233–301

4.2.3 Semantic rules for other JVM instructions

The SEL semantic rules of other JVM instructions together with two additional in-
structions, assume and assert, for checking preconditions/postconditions are pre-
sented in Figs. 7 and 8. Note that some of the rules can be optimized if the operands
are concrete, for example, the rule IADD-S has no need to create a new symbolic
integer if both operands are concrete. We adopt the more generalized treatment since
it is mathematically sound and simple.

The listed SEL rules can be easily extended to SELA and SELB rules similarly to
the case of getfield. In SELA, a symbolic location operand is first substituted by
a location. In SELB, a symbolic reference operand is first initialized to a symbolic lo-
cation or NULL. Interested readers are referred to Appendixes C and D, respectively,
for the formal rules. For the concrete execution, the semantic rules are faithful to the
JVM specification (Lindholm and Yellin 1999) as presented in Appendix B.

4.3 Relative soundness and completeness of symbolic execution rules

In this subsection, we show that the three SymExe algorithms (i.e., SEL, SELA,
and SELB) are relatively sound and complete with respect to the concrete execution.
We first define the soundness and completeness of a SymExe algorithm as follows:
(1) a SymExe algorithm is sound if and only if it can find the error when there is an
error in the concrete execution, (2) a SymExe algorithm is complete if and only if the
algorithm does not report false alarms. That is, if an error is found by the algorithm,
there must be a corresponding concrete execution trace leading to this error.

We now clarify the sources of relativeness of the soundness and completeness
properties of a SymExe algorithm. First, we say that a SymExe algorithm is relatively
sound when the soundness holds given bounds sufficiently large to find a designated
error. It is also assumed that an underlying theorem prover is sound by its usual defi-
nition of soundness lest the procedure of pruning infeasible paths unfairly excluding
an actually feasible path. (In technical words, if � ¬pc, then |= ¬pc for a path condi-
tion pc.) Meanwhile, we say that a SymExe algorithm is relatively complete when the
completeness holds provided that the feasibility of a path condition that can appear
during a SymExe session can always be decided by an underlying theorem prover.
In other words, an underlying theorem prover is complete by its usual definition of
completeness. (In technical words, if |= ¬pc, then � ¬pc for a path condition pc.)
Our definition of relative completeness is essentially the same as the one used for the
relative completeness of Hoare logic by Cook (1978).

In the rest of this article, we often omit “relative” before soundness and com-
pleteness for brevity sake. In order to prove the soundness, we will show that each
concrete execution trace has a corresponding trace in each of SEL, SELA, and SELB
given sufficient large bounds. Conversely, we will prove completeness by showing
that each trace in SEL, SELA, and SELB has a corresponding concrete execution
trace.

The rest of this subsection is organized as follows. Section 4.3.1 presents con-
cretization (γ) functions which relate each more abstract (coarser) state to a set of
less abstract (finer) states in the order of SELB, SELA, SEL, and concrete execution.
Section 4.3.2 sketches the soundness and completeness proofs based on simulations
of Kripke structures.

Autom Softw Eng (2012) 19:233–301 257

ALOAD-S
code(pc) = aload_n

σ ⇒S (g,next(pc), ξ, ξ(n)::ω,h,φ)

ASTORE-S
code(pc) = astore_n ω = v ::ω′
σ ⇒S (g,next(pc), ξ [n �→ v],ω′, h,φ)

IADD-S
code(pc) = iadd ω = v1 ::v2 ::ω′

σ ⇒S (g,next(pc), ξ,α ::ω′, h,φ ∪ {α = v1 + v2})
where α = new-prim-sym(INT, symbols(σ))

ISUB-S
code(pc) = isub ω = v1 ::v2 ::ω′

σ ⇒S (g,next(pc), ξ,α ::ω′, h,φ ∪ {α = v2 − v1})
where α = new-prim-sym(INT, symbols(σ))

NEW-S
code(pc) = new τ

σ ⇒S (g,next(pc), ξ, l ::ω,h[l �→ new-obj(symbols(σ), τ)], φ)

where l �∈ domh

PUTFIELD1-S
code(pc) = putfield f ω = v ::l ::ω′

σ ⇒S (g,next(pc), ξ,ω′, h[l �→ h(l)[f �→ v]], φ)

PUTFIELD2-S
code(pc) = putfield f ω = v ::NULL ::ω′
σ ⇒S NullPointerException, (g,pc, ξ,ω,h,φ)

ANEWARRAY-S
code(pc) = anewarray τ ω = v ::ω′

σ ⇒S (g,next(pc), ξ,ω′, h[l �→ α], φ ∪ {v ≥ 0})
‖ NegativeArraySizeException, (g,pc, ξ,ω,h,φ ∪ {v < 0})

where α = new-arr(symbols(σ), τ, v), l �∈ domh

IASTORE1-S
code(pc) = iastore ω = v ::i ::l ::ω′
σ ⇒S ArrayIndexOutOfBoundException,

(g,pc, ξ,ω,h,φ ∪ {i < 0 ∨ i ≥ h(l)(LEN)})

IASTORE2-S
code(pc) = iastore ω = v ::i ::l ::ω′

σ ⇒S (g,next(pc), ξ,ω′, h[l �→ α[i′ �→ v]], φ ∪ {i = i′})
where α = h(l), i′ ∈ acc-idx(α)

IASTORE3-S
code(pc) = iastore ω = v ::i ::l ::ω′

σ ⇒S (g,next(pc), ξ,ω′, h[l �→ α[i �→ v]], φ ∪ { i �= i′ | i′ ∈ I }
∪ {0 ≤ i, i < α(LEN), |I | < α(LEN)}) where α = h(l), I = acc-idx(α)

IASTORE4-S
code(pc) = iastore ω = v ::i ::NULL ::ω′
σ ⇒S NullPointerException, (g,pc, ξ,ω,h,φ)

INSTANCEOF1-S
code(pc) = instanceof τ ω = NULL ::ω′

σ ⇒S (g,next(pc), ξ,0::ω′, h,φ)

INSTANCEOF2-S
code(pc) = instanceof τ ω = l ::ω′

σ ⇒S (g,next(pc), ξ,1::ω′, h,φ ∪ {τ ′ <: τ })
‖ (g,next(pc), ξ,0::ω′, h,φ ∪ {τ ′ �<: τ }) where ατ ′ = h(l)

CHECKCAST1-S
code(pc) = checkcast τ ω = NULL ::ω′

σ ⇒S (g,next(pc), ξ,ω,h,φ)

Fig. 7 Other rules in SEL (1)

258 Autom Softw Eng (2012) 19:233–301

CHECKCAST2-S
code(pc) = checkcast τ ω = l ::ω′

σ ⇒S (g,next(pc), ξ,ω,h,φ ∪ {τ ′ <: τ }) ‖
ClassCastException, (g,pc, ξ,ω,h,φ ∪ {τ ′ �<: τ }) where ατ ′ = h(l)

IF_ICMPLT-S
code(pc) = if_icmplt pc′ ω = v1 ::v2 ::ω′

σ ⇒S (g,next(pc), ξ,ω′, h,φ ∪ {v2 ≥ v1}) ‖ (g,pc′, ξ,ω′, h,φ ∪ {v2 < v1})

IF_ACMPEQ1-S
code(pc) = if_acmpeq pc′ ω = v2 ::v1 ::ω′ v2 �= v1

σ ⇒S (g,next(pc), ξ,ω′, h,φ)

IF_ACMPEQ2-S
code(pc) = if_acmpeq pc′ ω = v2 ::v1 ::ω′ v2 = v1

σ ⇒S (g,pc′, ξ,ω′, h,φ)

IFNULL1-S
code(pc) = ifnull pc′ ω = l ::ω′

σ ⇒S (g,next(pc), ξ,ω′, h,φ)

IFNULL2-S
code(pc) = ifnull pc′ ω = NULL ::ω′

σ ⇒S (g,pc′, ξ,ω′, h,φ)

IFNONNULL1-S
code(pc) = ifnonnull pc′ ω = l ::ω′

σ ⇒S (g,pc′, ξ,ω′, h,φ)

IFNONNULL2-S
code(pc) = ifnonnull pc′ ω = NULL ::ω′

σ ⇒S (g,next(pc), ξ,ω′, h,φ)

ASSUME-S
code(pc) = assume ω = v ::ω′

σ ⇒S (g,next(pc), ξ,ω′, h,φ ∪ {v = 1})

ASSERT-S
code(pc) = assert ω = v ::ω′

σ ⇒S (g,next(pc), ξ,ω′, h,φ ∪ {v = 1}) ‖ ERROR, (g,pc, ξ,ω,h,φ ∪ {v = 0})

Fig. 8 Other rules in SEL(2)

Limitations of decision procedures It is well known that first-order logic and the
Peano arithmetic (natural numbers) are undecidable. So automatic decision pro-
cedures (DP) have to either work on some subsets that are decidable or give up
the completeness, that is, return unknown for some formulas. Currently, many DPs
such as CVC3 (Barrett and Tinelli 2007), Yices (Dutertre and de Moura 2006), Z3
(de Moura and Bjørner 2008) support decidable theories such as Presburger arith-
metic and expand to undecidable theories. In general, theories such as rational linear
arithmetic, array, bit vector are supported. Language features such as integer overflow
and floating point arithmetic are usually not directly supported but can be worked
around by using bit vectors. As mentioned earlier, even some theories (e.g., quanti-
fiers and non-linear arithmetic) are supported by a DP, it may still return unknown as
results due to their undecidable properties.

Thus, from a practical point of view, the limitations of the decision procedure
impose some limitations on any approach that makes use it. On the other hand, as
decision procedure techniques are continually being improved, as they have been in
recent years, the better the approach is. In light of this, our approach is parameterized

Autom Softw Eng (2012) 19:233–301 259

on the underlying decision procedure used (as they are orthogonal to reasoning about
heap object structures). The formal treatment of our approach presented next (that es-
tablishes relative soundness and completeness properties of our approach with respect
to the underlying decision procedure) is done to show that our approach does not add
unnecessary unsoundness and incompleteness. In other words, relative completeness
guarantees a zero false alarm rate when the language expressing path conditions is
restricted enough to ensure the complete handling of a theorem prover. Meanwhile,
relative soundness guarantees that an error trace can be found if there exists an error
in a given program.

4.3.1 Concretization (γ) functions

1. γs : States → P (Statec);
2. γa : Statea → P (States);
3. γb : Stateb → P (Statea).

First, we take the view that Statec ≺ States ≺ Statea ≺ Stateb , where ≺ means more
abstract. Then we can define three concretization (γ) functions that take a more ab-
stract state and return the set of less abstract states that the more abstract state repre-
sents. Intuitively,

1. σc ∈ γs(σs) if and only if σs can be transformed to σc by the following operations:

– systematic substitution of primitive symbols with concrete values that satisfy
the path condition.

– a permutation of heap locations.
– an application of a lazy initialization to an undefined field of a symbolic objec-

t/array.

2. σs ∈ γa(σa) if and only if σs is a resulting state of substituting each symbolic
location in σa with an existing symbolic object of a compatible type in the heap
or a fresh symbolic object.

3. σa ∈ γb(σb) if and only if σa is a resulting state of substituting each symbolic
reference in σb with NULL or a fresh symbolic location.

The formal definitions of the three functions are shown in Appendix E. The γ func-
tions have the following properties:

1. For all σs ∈ States , if the path condition of σs is satisfiable, then γs(σs) �= ∅.
2. For all σa ∈ Statea , if the path condition of σa is satisfiable, then γa(σa) �= ∅.
3. For all σb ∈ Stateb , if the path condition of σb is satisfiable, then γa(σb) �= ∅.

The properties are readily followed from the definitions.

4.3.2 Soundness and completeness proof

Given a method, we model concrete JVM, SEL, SELA, and SELB computation trees
using unlabeled Kripke structures (defined in Appendix F): C = (C , IC ,−→C), S =
(S , IS ,−→S), A = (A, IA,−→A), and B = (B, IB,−→B). The components
of Kripke structure X where X is C , S , A, and B are defined as follows:

260 Autom Softw Eng (2012) 19:233–301

σc

−→C

σs

γs

−→S

σa

γa

−→A

σb

γb

−→B

σ ′
c σ ′

s

γs

σ ′
a

γa

σ ′
b

γb

Fig. 9 Simulation relations

1. X = Statex ∪ (EXCEPTION × Statex) ∪ (ERROR × Statex), where hereafter x

denotes c, s, a, and b, respectively, when X is C , S , A, and B. Note that the γ

functions are trivially extended to Kripke states.
2. The initial states, IX , are the same as those defined in Sect. 4.1.
3. The transition relations are defined as follows: σx −→X σ ′

x iff σx ⇒n
X σ ′

x for n > 0
such that only the first n − 1 state transitions must be initializations of symbolic
locations or symbolic references, and the path condition of σ ′

x is satisfiable.

Notice that the four Kripke structures model the complete computation trees without
any bounding so that later proofs will be independent of bounding strategies.

Lemma 1

1. IC = ⋃
σs∈IS γs(σs).

2. IS = ⋃
σa∈IA γa(σa).

3. IA = ⋃
σb∈IB γb(σb).

Proof All three parts can be shown by set inclusions on both directions. For example,
for the ⊆ direction of part (1), we show that for all σc ∈ IC there exists a σs ∈ IS
such that σc ∈ γs(σs); for the ⊇ direction of part (1), we show that for all σs ∈ IS ,
IC ⊇ γs(σs). For more detailed proof, readers are referred to Appendix G. �

Soundness To prove the soundness, first, we show that there are simulation relations
(defined in Appendix F) relating Kripke structures C to S , S to A, and A to B as
illustrated in Fig. 9.

Lemma 2 Given the following relations,

– Rγs ⊆ C × S as (σc, σs) ∈ Rγs if and only if σc ∈ γs(σs);
– Rγa ⊆ S × A as (σs, σa) ∈ Rγa if and only if σs ∈ γa(σa);
– Rγb

⊆ A × B as (σa, σb) ∈ Rγb
if and only if σa ∈ γb(σb),

1. C �Rγs
S ;

2. S �Rγa
A;

3. A �Rγb
B.

Proof All three parts can be proved by rule induction. More detailed proof of the
simulation relations is presented in a thesis (Deng 2007). �

Autom Softw Eng (2012) 19:233–301 261

Theorem 1

1. Given any trace in C : σc1 −→C σc2 −→C · · · −→C σcn , where n > 0 and σc1 ∈ IC ,
there exists a trace in S : σs1 −→S σs2 −→S · · · −→S σsn such that σck

∈ γs(σsk)

for all 1 ≤ k ≤ n.
2. Given any trace in S : σs1 −→S σs2 −→S · · · −→S σsn , where n > 0 and σs1 ∈

IS , there exists a trace in A: σa1 −→A σa2 −→A · · · −→A σan such that σsk ∈
γa(σak

) for all 1 ≤ k ≤ n.
3. Given any trace in A: σa1 −→A σa2 −→A · · · −→A σan , where n > 0 and σa1 ∈

IA, there exists a trace in B: σb1 −→B σb2 −→B · · · −→B σbn such that σak
∈

γb(σbk
) for all 1 ≤ k ≤ n.

Proof For each of the three parts, we show there exists a corresponding trace by
mathematical induction on the length of the traces. The base cases are direct results
of Lemma 1. The induction steps are established by applying Lemma 2. �

Corollary 1 Given any trace in C : σc1 −→C σc2 −→C · · · −→C σcn , where n > 0
and σc1 ∈ IC , then

1. there exists a trace in S : σs1 −→S σs2 −→S · · · −→S σsn such that σck
∈ γs(σsk)

for all 1 ≤ k ≤ n;
2. there exists a trace in A: σa1 −→A σa2 −→A · · · −→A σan such that σck

∈⋃
σs∈γa(σak

) γs(σs) for all 1 ≤ k ≤ n;
3. there exists a trace in B: σb1 −→B σb2 −→B · · · −→B σbn such that σck

∈⋃
σa∈γb(σbk

)

⋃
σs∈γa(σa) γs(σs) for all 1 ≤ k ≤ n.

Proof Part (1) is the same as Theorem 1(1). Part (2) can be shown by combining
part (1) and Theorem 1(2). Similarly, by combining the results of part (2) and Theo-
rem 1(3), we can get part (3). �

With Corollary 1, we are ready to show the (relative) soundness of our SEL, SELA,
and SELB with respect to the concrete JVM:

Corollary 2 (Soundness) If there is a bug in the concrete execution, given sufficiently
large bounds, SEL, SELA, and SELB can find the bug.

Proof Given a bug in the concrete execution, there must be a trace in concrete JVM
C that leads to it. Suppose the trace has n steps in C . By Corollary 1, there exists
a corresponding trace with n steps in each of S , A, and B. If the bounds are large
enough such that all n step traces in S , A, and B are explored by SEL, SELA, and
SELB respectively, the corresponding symbolic traces are presented in SEL, SELA,
and SELB. Therefore, the bug can be found in SEL, SELA, and SELB. �

Completeness We will show that every trace in S , A, and B corresponds to a trace
in C .

262 Autom Softw Eng (2012) 19:233–301

We first define notion of unlabeled power Kripke structure: given any Kripke struc-
ture, K = (K, IK , −→K), the power Kripke structure of K is

P (K) = (P (K), P (IK),
•−→K),

satisfying the following condition: for two sets of states S,S′ ⊆ K , S
•−→K S′ only

if ∀σ ′ ∈ S′.∃σ ∈ S.σ −→K σ ′.
Then we introduce power Kripke structures of C , S , A, and B as P (C) =

(P (C), P (IC),
•−→C), P (S) = (P (S), P (IS),

•−→S), P (A) = (P (A), P (IA),
•−→A), and P (B) = (P (B), P (IB),

•−→B). Next we show there are simulation re-
lations relating S to P (C), A to P (S), and B to P (A).

Lemma 3 Given the following relations,

– R•
γs

⊆ S × P (C) as (σs,C) ∈ R•
γs

if and only if C = γs(σs);
– R•

γa
⊆ A × P (S) as (σa, S) ∈ R•

γa
if and only if S = γa(σa);

– R•
γb

⊆ B × P (A) as (σb,A) ∈ R•
γb

if and only if A = γa(σb),

1. S �R•
γs

P (C);
2. A �R•

γa
P (S);

3. B �R•
γb

P (A).

Proof We can also use rule induction to show all three parts. More detailed proof of
the simulation relations is presented in thesis (Deng 2007). �

Theorem 2

1. Given any trace in S : σs1 −→S σs2 −→S · · · −→S σsn where n > 0 and σs1 ∈ IS ,
there exists a trace in C : σc1 −→C σc2 −→C · · · −→C σcn such that σck

∈ γs(σsk)

for all 1 ≤ k ≤ n.
2. Given any trace in A: σa1 −→A σa2 −→A · · · −→A σan where n > 0 and

σa1 ∈ IA, there exists a trace in S : σs1 −→S σs2 −→S · · · −→S σsn such that
σsk ∈ γa(σak

) for all 1 ≤ k ≤ n.
3. Given any trace in B: σb1 −→B σb2 −→B · · · −→B σbn where n > 0 and

σb1 ∈ IB , there exists a trace in A: σa1 −→A σa2 −→A · · · −→A σan such that
σak

∈ γb(σbk
) for all 1 ≤ k ≤ n.

Proof We only prove part (1). Parts (2) and (3) can be shown similarly. By the defi-
nition of −→S , the path condition of σsn must be satisfiable. From the property of γs

function, γs(σsn) �= ∅. Define a sequence of states in P (C) as

(Ck = γs(σsk))1≤k≤n.

Clearly Cn �= ∅. After applying mathematical induction with Lemma 3(1), we get
C1

•−→C C2
•−→C · · · •−→C Cn. By Lemma 1, C1 ⊆ IC . Since Cn �= ∅, we can

pick a σcn ∈ Cn. From the definition of
•−→C , there exists a σcn−1 ∈ Cn−1 such that

σcn−1 −→C σcn . After repeating the process n − 1 times, we get the following trace
in C : σc1 −→C σc2 −→C · · · −→C σcn where σck

∈ Ck = γs(σsk) for all 1 ≤ k ≤ n. �

Autom Softw Eng (2012) 19:233–301 263

Corollary 3

1. Given any trace in S : σs1 −→S σs2 −→S · · · −→S σsn where n > 0 and σs1 ∈ IS ,
there exists a trace in C : σc1 −→C σc2 −→C · · · −→C σcn such that σck

∈ γs(σsk)

for all 1 ≤ k ≤ n.
2. Given any trace in A: σa1 −→A σa2 −→A · · · −→A σan where n > 0

and σa1 ∈ IA, there exists a trace in C : σc1 −→C σc2 −→C · · · −→C σcn such
that σck

∈ ⋃
σs∈γa(σak

) γs(σs) for all 1 ≤ k ≤ n.
3. Given any trace in B: σb1 −→B σb2 −→B · · · −→B σbn where n > 0 and

σb1 ∈ IB , there exists a trace in C : σc1 −→C σc2 −→C · · · −→C σcn such that
σck

∈ ⋃
σa∈γb(σbk

)

⋃
σs∈γa(σa) γs(σs) for all 1 ≤ k ≤ n.

Proof Part (1) is directly from Theorem 2(1). Part (2) can be shown by composing
Theorem 2(2) and part (1). Part (3) can be shown by combining Theorem 2(3) and
part (2). �

The (relative) completeness of our SEL, SELA, and SELB with respect to the
concrete JVM is the direct consequence of Corollary 3.

Corollary 4 (Completeness) If SEL, SELA, or SELB finds a bug, it is present in the
concrete execution as well.

Proof Given that SEL, SELA, or SELB finds a bug, there must be a trace of SEL,
SELA, or SELB that demonstrates the bug. Therefore, there is a trace of n steps for
some n in S , A, or B that leads to the bug. By Corollary 3, there exists a correspond-
ing concrete trace in C . Hence, the bug exists in concrete execution. �

5 Experiments

In this section, we systematically compare the performance of the lazy initialization
algorithm with the two improved algorithms (lazier and lazier#) and demonstrate the
effectiveness of the lazier# algorithm by experimental studies. We do not compare
Symbolic JPF which originated the lazy initialization algorithm against the lazier and
lazier# algorithms for three reasons. First, symbolic JPF tool is being reimplemented
using custom bytecode interpretation approach thus is not ready for the examples that
we consider in this section as of the writing of this document. Second, having corre-
sponded closely with NASA Ames personnel (the developers of the Symbolic JPF),
we are confident that our implementation of lazy initialization reflects that strategy
implemented in Symbolic JPF. Third, we believe that comparing the three algorithms
in Kiasan (our implementation of the algorithms) would present a more controlled ex-
periment than in Kiasan and Symbolic JPF since the goal is to compare algorithms,
not tools. In fact, direct comparison of the tools may even obscure inherent differ-
ences between the algorithms since there are many engineering differences between
the tools, for example, having different implementations and using different theorem
provers, etc.

264 Autom Softw Eng (2012) 19:233–301

The rest of this section is organized as follows. We will first describe the setup
of the experimental studies in Sect. 5.1. Then Sect. 5.2 compares the performance of
lazy, lazier, lazier# algorithms and two implementations of the algorithms. Finally,
Sect. 5.3 presents a benchmark on common data structures and containers from the
JDK library package java.util.

5.1 Experiment setup

Kiasan implementations There are two implementations of Kiasan: Bogor/Kiasan
(Deng et al. 2006) and Sireum/Kiasan. Kiasan was initially implemented in the Bogor
framework (Robby et al. 2003), thus, the name Bogor/Kiasan. Recently, we have re-
implemented Kiasan in the Sireum framework (Robby 2008).

Sireum/Kiasan has many improvements over Bogor/Kiasan. The two most im-
portant ones are more bounding strategies and decision procedure support. First,
Sireum/Kiasan has implemented both the k-bound and the n-bound while Bogor/Ki-
asan only has implemented the k-bound. Second, Sireum/Kiasan has more flexi-
ble backend plugin architecture so that different backend decision procedures can
be plugged in on the fly. As described in Sect. 2, SymExe relies on decision pro-
cedures for path condition satisfiability checking. We developed Bogor/Kiasan and
Sireum/Kiasan in Java whereas most high performance decision procedures are im-
plemented in C/C++. While in Bogor/Kiasan only CVC3 (Barrett and Tinelli 2007) is
used through inter-process communication (IPC) by means of a pipe, Sireum/Kiasan
can communicate with either CVC3 or Yices (Dutertre and de Moura 2006) through
either IPC or the Java Native Interface (JNI).

We have used both Kiasan implementations despite the fact that Sireum/Kiasan
supersedes Bogor/Kiasan. While experimental data of Sireum/Kiasan reflects the per-
formance of our latest SymExe implementation, we have used Bogor/Kiasan for the
purpose of comparison between the three SymExe algorithms we described earlier.
This is because, as will be empirically demonstrated in this section, the lazier# ini-
tialization algorithm outperforms the other two algorithms, and we implemented only
the lazier# initialization algorithm in Sireum/Kiasan.

Experiment environment The experiments were conducted in a machine with dual
Xeon Quad-core 2.8 GHz and 16 GiB of Memory running OS X 10.5. And we used
Java 1.6, 64-bit with 512 MiB heap.

Examples and translation Most examples are taken from either the book (Weiss
2006) such as AATree, AvlTree, and BinarySearchTree, LeftistHeap, Bi-
naryHeap and Sort or the package java.util of Java library such as ArrayDeque,
ArrayList, LinkedList, PriorityQueue, Stack, TreeMap, TreeSet,
and Vector. Container was earlier introduced in Program 1; GC adapted from a
TVLA (Lev-Ami and Sagiv 2000) example is the marking phase of the mark and
sweep garbage collection algorithm. For each class, we have added specifications,
that is, an executable class invariant (inv) and a precondition (pre) and postcondi-
tion (post) for each method to be checked. In order to check these specifications in
SymExe, we translate each method M into the following form:

Autom Softw Eng (2012) 19:233–301 265

Fig. 10 Ratio of #Paths explored by the lazy, lazier, and lazier# initialization algorithms over #paths
explored by the lazy initialization algorithm with k = 3

assume(inv); assume(pre); M; assert(inv); assert(post);

where the assume/assert(exp) statements are executed as follows: the exp is
evaluated first and the result is pushed onto the top of the operand stack and then the
rules for the assume and assert instructions described in Sect. 4 are applied.

5.2 Comparison of the lazy, lazier, and lazier# initialization algorithms

We have performed the experimental study on nine examples listed in Table 1.
We have compared the performance of the lazy, lazier, and lazier# initialization

algorithms based on two data: (1) the number of fully explored paths and (2) running
time. We also have controlled the k-bound to see how differently this bound affects
the performance of each algorithm. We highlight a few points next.

There is a total order ≥ among the number of explored paths of the three algo-
rithms in the order of the lazy, lazier, and lazier# initialization algorithms. In addi-
tion, except for Sort and GC, the order is strict. A similar order is observed among
the running times of the algorithms assuming a certain margin of error for the Sort
and GC examples.

In general, the reduction ratios of fully explored paths by the lazier and lazier#
initialization algorithms are very large. For example, as depicted in Fig. 10 based on
the data in Table 1, the lazier and lazier# initialization algorithms explore 70% to
90% fewer paths than the lazy initialization algorithm for the AATree and TreeMap
examples. As a matter of fact, we proved in our other work (Deng et al. 2010) that the
lazier# initialization algorithm explores the optimal numbers of paths for the search
tree examples (i.e., AATree, AvlTree, BinarySearchTree, and TreeMap).

Although, in all the algorithms, the number of explored paths grows exponentially
as k increases, the increasing rate is the lowest in the lazier# case, and highest in the
lazy case as illustrated in Fig. 11.

The Sort and GC examples show no improvement due to different reasons. First,
the Sort example manipulates an array of integers, not an array of objects, and hence
the lazy initialization plays little role. Second, in the GC example, objects are fully
expanded, and hence the degree of laziness takes little effect.

266 Autom Softw Eng (2012) 19:233–301

Fig. 11 Numbers of paths explored by the lazy, lazier, and lazier# initialization algorithms

Fig. 12 Ratio of running time of Sireum/Kiasan over running time of Bogor/Kiasan. In both implemen-
tations, the lazier# initialization algorithm and CVC3 through IPC are used

We have also measured the performance of Sireum/Kiasan. Due to various opti-
mizations we have applied,7 Sireum/Kiasan is up to 90% faster, as depicted in Fig. 12,
than Bogor/Kiasan even without taking advantage of faster SMT solver such as Yices
(Dutertre and de Moura 2006).

5.3 Benchmark experiment using n-bound

To provide benchmarks for other analysis tools, we have also conducted an experi-
mental study using Sireum/Kiasan with n-bounding since most similar analysis tools
bound the number of heap objects. The backend we used is Yices through JNI since
it is the fastest among all backends as shown in Table 1.

The result is shown in Table 2. For each example, we have collected the number
of fully explored paths and running time for all the numbers of nodes, n, from 5 to 9.

7We defer the description of the optimizations to the future work.

Autom Softw Eng (2012) 19:233–301 267

Ta
bl

e
1

E
xp

er
im

en
ta

l
da

ta
us

in
g

k
-b

ou
nd

(Y
n—

Y
ic

es
th

ro
ug

h
JN

I;
C

n—
C

V
C

3
th

ro
ug

h
JN

I;
C

p—
C

V
C

3
th

ro
ug

h
IP

C
;

L
z—

L
az

y;
L

r—
L

az
ie

r;
L

#—
L

az
ie

r#
;

s—
se

co
nd

s;
m

in
—

m
in

ut
es

)

E
xa

m
pl

e
k

Si
re

um
/K

ia
sa

n
B

og
or

/K
ia

sa
n

C
la

ss
M

et
ho

d
Pa

th
s

T
im

e
Pa

th
s

T
im

e

Y
n

C
n

C
p

L
z

L
r

L
#

L
z

L
r

L
#

A
AT

re
e

fin
d

1
4

0.
4

s
0.

4
s

0.
4

s
15

8
4

1.
1

s
0.

7
s

0.
5

s

2
16

0.
7

s
0.

8
s

0.
9

s
19

7
32

16
11

.4
s

3.
0

s
2.

1
s

3
84

2.
0

s
3.

1
s

5.
5

s
82

7
16

8
84

1.
8

m
in

25
.6

s
16

.3
s

fin
dM

ax
1

2
0.

2
s

0.
2

s
0.

2
s

5
3

2
0.

6
s

0.
4

s
0.

3
s

2
4

0.
2

s
0.

3
s

0.
3

s
37

7
4

3.
1

s
1.

3
s

1.
0

s

3
10

0.
5

s
1.

1
s

2.
3

s
92

19
10

15
.3

s
7.

9
s

7.
0

s

fin
dM

in
1

2
0.

2
s

0.
2

s
0.

2
s

5
3

2
0.

6
s

0.
4

s
0.

3
s

2
4

0.
2

s
0.

3
s

0.
3

s
41

7
4

3.
2

s
1.

3
s

1.
0

s

3
10

0.
4

s
1.

0
s

2.
1

s
96

19
10

15
.9

s
7.

9
s

7.
0

s

in
se

rt
1

4
0.

3
s

0.
3

s
0.

4
s

15
10

4
1.

4
s

1.
2

s
0.

7
s

2
16

0.
5

s
0.

6
s

0.
8

s
96

44
16

8.
1

s
4.

7
s

2.
4

s

3
84

1.
3

s
2.

5
s

5.
3

s
76

3
24

2
84

2.
1

m
in

44
.4

s
18

.3
s

re
m

ov
e

1
4

0.
2

s
0.

2
s

0.
2

s
7

5
4

0.
6

s
0.

5
s

0.
5

s

2
16

0.
3

s
0.

5
s

0.
5

s
10

6
26

16
6.

9
s

2.
5

s
2.

0
s

3
84

1.
0

s
3.

1
s

4.
1

s
34

88
38

0
84

19
.5

m
in

50
.3

s
16

.2
s

A
vl

Tr
ee

fin
d

1
4

0.
1

s
0.

1
s

0.
2

s
6

5
4

0.
6

s
0.

5
s

0.
4

s

2
21

0.
2

s
0.

3
s

0.
5

s
51

29
21

3.
6

s
2.

5
s

2.
2

s

3
19

0
1.

6
s

4.
0

s
7.

8
s

75
3

27
5

19
0

1.
4

m
in

33
.1

s
26

.4
s

fin
dM

ax
1

2
0.

1
s

0.
1

s
0.

2
s

4
3

2
0.

5
s

0.
4

s
0.

3
s

2
5

0.
1

s
0.

2
s

0.
2

s
19

9
5

2.
2

s
1.

5
s

1.
1

s

3
20

0.
3

s
1.

4
s

2.
8

s
13

5
39

20
21

.4
s

11
.1

s
9.

1
s

268 Autom Softw Eng (2012) 19:233–301

Ta
bl

e
1

(C
on

ti
nu

ed
)

E
xa

m
pl

e
k

Si
re

um
/K

ia
sa

n
B

og
or

/K
ia

sa
n

C
la

ss
M

et
ho

d
Pa

th
s

T
im

e
Pa

th
s

T
im

e

Y
n

C
n

C
p

L
z

L
r

L
#

L
z

L
r

L
#

fin
dM

in
1

2
0.

1
s

0.
1

s
0.

1
s

4
3

2
0.

5
s

0.
4

s
0.

3
s

2
5

0.
1

s
0.

2
s

0.
2

s
19

9
5

2.
2

s
1.

4
s

1.
1

s

3
20

0.
3

s
1.

4
s

2.
7

s
13

5
39

20
21

.2
s

11
.0

s
9.

1
s

in
se

rt
1

4
0.

2
s

0.
2

s
0.

3
s

13
10

4
1.

3
s

1.
2

s
0.

7
s

2
21

0.
3

s
0.

4
s

0.
5

s
11

0
58

21
8.

8
s

5.
7

s
2.

8
s

3
19

0
1.

9
s

4.
3

s
8.

4
s

15
91

55
0

19
0

5.
1

m
in

1.
6

m
in

36
.8

s

B
in

ar
yS

ea
rc

hT
re

e
fin

d
1

4
0.

1
s

0.
1

s
0.

1
s

6
5

4
0.

5
s

0.
4

s
0.

4
s

2
21

0.
2

s
0.

2
s

0.
3

s
51

29
21

3.
0

s
2.

1
s

1.
8

s

3
23

6
1.

3
s

3.
3

s
7.

3
s

89
9

34
1

23
6

1.
2

m
in

27
.2

s
21

.3
s

fin
dM

ax
1

2
0.

1
s

0.
1

s
0.

1
s

4
3

2
0.

3
s

0.
3

s
0.

2
s

2
5

0.
1

s
0.

1
s

0.
2

s
19

9
5

1.
8

s
1.

1
s

0.
8

s

3
26

0.
2

s
0.

7
s

1.
7

s
17

1
51

26
15

.5
s

7.
3

s
5.

9
s

fin
dM

in
1

2
0.

1
s

0.
1

s
0.

1
s

4
3

2
0.

3
s

0.
3

s
0.

2
s

2
5

0.
1

s
0.

1
s

0.
2

s
19

9
5

1.
8

s
1.

1
s

0.
8

s

3
26

0.
2

s
0.

7
s

1.
7

s
17

1
51

26
15

.7
s

7.
1

s
5.

9
s

in
se

rt
1

4
0.

1
s

0.
1

s
0.

1
s

13
10

4
1.

1
s

0.
9

s
0.

5
s

2
21

0.
2

s
0.

3
s

0.
4

s
11

0
58

21
5.

8
s

4.
0

s
2.

0
s

3
23

6
1.

3
s

3.
6

s
7.

8
s

19
03

68
2

23
6

2.
6

m
in

57
.1

s
23

.8
s

re
m

ov
e

1
4

0.
1

s
0.

1
s

0.
1

s
6

5
4

0.
4

s
0.

4
s

0.
3

s

2
21

0.
2

s
0.

3
s

0.
3

s
76

31
21

3.
8

s
2.

1
s

1.
7

s

3
23

6
1.

2
s

3.
2

s
6.

4
s

23
47

39
3

23
6

3.
1

m
in

29
.7

s
21

.1
s

Autom Softw Eng (2012) 19:233–301 269

Ta
bl

e
1

(C
on

ti
nu

ed
)

E
xa

m
pl

e
k

Si
re

um
/K

ia
sa

n
B

og
or

/K
ia

sa
n

C
la

ss
M

et
ho

d
Pa

th
s

T
im

e
Pa

th
s

T
im

e

Y
n

C
n

C
p

L
z

L
r

L
#

L
z

L
r

L
#

Le
fti

st
H

ea
p

de
le

te
M

in
1

2
0.

1
s

0.
1

s
0.

1
s

4
3

2
0.

2
s

0.
2

s
0.

2
s

2
5

0.
1

s
0.

1
s

0.
1

s
22

9
5

1.
6

s
1.

0
s

0.
7

s

3
25

0.
3

s
0.

6
s

0.
9

s
19

0
49

25
17

.8
s

6.
8

s
5.

0
s

fin
dM

in
1

2
0.

1
s

0.
1

s
0.

1
s

4
3

2
0.

3
s

0.
3

s
0.

2
s

2
4

0.
1

s
0.

1
s

0.
1

s
16

7
4

1.
5

s
1.

0
s

0.
7

s

3
12

0.
2

s
0.

5
s

0.
7

s
78

23
12

8.
6

s
4.

5
s

3.
9

s

in
se

rt
1

3
0.

1
s

0.
1

s
0.

2
s

6
6

3
0.

7
s

0.
7

s
0.

4
s

2
8

0.
1

s
0.

2
s

0.
2

s
16

16
8

2.
0

s
2.

2
s

1.
3

s

3
31

0.
3

s
0.

7
s

1.
0

s
62

62
31

10
.6

s
10

.2
s

6.
1

s

m
er

ge
1

6
0.

1
s

0.
1

s
0.

1
s

6
6

6
0.

6
s

0.
6

s
0.

6
s

2
34

0.
3

s
0.

4
s

0.
6

s
34

34
34

4.
3

s
4.

0
s

4.
3

s

3
58

8
5.

7
s

12
.0

s
20

.0
s

58
8

58
8

58
8

2.
8

m
in

2.
7

m
in

3.
0

m
in

Tr
ee

M
ap

ge
t

1
4

0.
1

s
0.

1
s

0.
1

s
6

5
4

0.
4

s
0.

4
s

0.
4

s

2
28

0.
2

s
0.

6
s

0.
6

s
71

39
28

3.
5

s
2.

8
s

2.
2

s

3
33

1
2.

2
s

18
.8

s
9.

9
s

38
63

73
9

33
1

4.
3

m
in

55
.7

s
35

.9
s

pu
t

1
4

0.
2

s
0.

2
s

0.
3

s
13

10
4

1.
3

s
1.

7
s

0.
7

s

2
28

0.
4

s
1.

2
s

1.
0

s
15

3
78

28
14

.5
s

9.
5

s
4.

2
s

3
33

1
4.

2
s

56
.9

s
21

.4
s

56
50

14
81

33
1

24
.0

m
in

6.
2

m
in

1.
3

m
in

re
m

ov
e

1
4

0.
1

s
0.

2
s

0.
2

s
6

5
4

0.
6

s
0.

7
s

0.
5

s

2
28

0.
3

s
1.

2
s

1.
1

s
12

1
43

28
11

.4
s

5.
2

s
3.

9
s

3
33

1
3.

6
s

57
.5

s
21

.4
s

44
95

90
5

33
1

15
.1

m
in

3.
1

m
in

1.
3

m
in

270 Autom Softw Eng (2012) 19:233–301

Ta
bl

e
1

(C
on

ti
nu

ed
)

E
xa

m
pl

e
k

Si
re

um
/K

ia
sa

n
B

og
or

/K
ia

sa
n

C
la

ss
M

et
ho

d
Pa

th
s

T
im

e
Pa

th
s

T
im

e

Y
n

C
n

C
p

L
z

L
r

L
#

L
z

L
r

L
#

G
C

m
ar

k
1

30
6

1.
3

s
1.

3
s

1.
3

s
30

6
30

6
30

6
15

.1
s

17
.0

s
16

.5
s

C
on

ta
in

er
sw

ap
1

2
0.

0
s

0.
0

s
0.

0
s

20
6

2
1

s
0.

4
s

0.
1

s

2
2

0.
0

s
0.

0
s

0.
0

s
20

6
2

1
s

0.
4

s
0.

1
s

3
2

0.
0

s
0.

0
s

0.
0

s
20

6
2

1
s

0.
4

s
0.

1
s

B
in

ar
yH

ea
p

de
le

te
M

in
1

2
0.

0
s

0.
1

s
0.

1
s

2
2

2
0.

2
s

0.
3

s
0.

2
s

2
3

0.
0

s
0.

1
s

0.
1

s
3

3
3

0.
3

s
0.

4
s

0.
3

s

3
5

0.
1

s
0.

1
s

0.
1

s
5

5
5

0.
5

s
0.

6
s

0.
5

s

fin
dM

in
1

2
0.

0
s

0.
0

s
0.

1
s

2
2

2
0.

2
s

0.
2

s
0.

2
s

2
3

0.
0

s
0.

1
s

0.
1

s
3

3
3

0.
3

s
0.

4
s

0.
3

s

3
4

0.
0

s
0.

1
s

0.
1

s
4

4
4

0.
4

s
0.

5
s

0.
4

s

in
se

rt
1

2
0.

0
s

0.
1

s
0.

1
s

2
2

2
0.

3
s

0.
3

s
0.

3
s

2
5

0.
1

s
0.

1
s

0.
2

s
5

5
5

0.
5

s
0.

6
s

0.
6

s

3
8

0.
1

s
0.

2
s

0.
4

s
8

8
8

0.
7

s
0.

9
s

0.
9

s

S
or

t
in

se
rt

io
nS

or
t

1
1

0.
0

s
0.

0
s

0.
0

s
1

1
1

0.
1

s
0.

2
s

0.
1

s

2
3

0.
0

s
0.

0
s

0.
1

s
3

3
3

0.
2

s
0.

3
s

0.
2

s

3
9

0.
0

s
0.

1
s

0.
2

s
9

9
9

0.
8

s
1.

0
s

0.
8

s

se
le

ct
io

nS
or

t
1

1
0.

0
s

0.
0

s
0.

0
s

1
1

1
0.

1
s

0.
2

s
0.

1
s

2
3

0.
0

s
0.

0
s

0.
1

s
3

3
3

0.
3

s
0.

3
s

0.
3

s

3
10

0.
1

s
0.

1
s

0.
2

s
10

10
10

1.
0

s
1.

0
s

1.
0

s

sh
el

ls
or

t
1

1
0.

0
s

0.
0

s
0.

1
s

1
1

1
0.

2
s

0.
2

s
0.

2
s

2
3

0.
0

s
0.

1
s

0.
2

s
3

3
3

0.
4

s
0.

4
s

0.
4

s

3
9

0.
1

s
0.

3
s

0.
4

s
9

9
9

0.
9

s
1.

0
s

1.
0

s

Autom Softw Eng (2012) 19:233–301 271

Ta
bl

e
2

E
xp

er
im

en
ta

ld
at

a
us

in
g

n
-b

ou
nd

(P
—

pa
th

s,
T—

tim
e)

E
xa

m
pl

e
n

=
5

n
=

6
n

=
7

n
=

8
n

=
9

C
la

ss
M

et
ho

d
P

T
P

T
P

T
P

T
P

T

A
AT

re
e

co
nt

ai
ns

56
1.

9
s

95
3.

2
s

15
5

4.
8

s
24

0
7.

1
s

39
2

10
.8

s

fin
dM

ax
8

1.
0

s
11

1.
7

s
15

2.
5

s
20

3.
3

s
28

4.
5

s

fin
dM

in
8

1.
0

s
11

1.
8

s
15

2.
4

s
20

3.
4

s
28

4.
5

s

in
se

rt
56

2.
1

s
95

3.
4

s
15

5
4.

9
s

24
0

7.
6

s
39

2
12

.0
s

is
E

m
pt

y
8

0.
9

s
11

1.
6

s
15

2.
3

s
20

3.
2

s
28

4.
3

s

re
m

ov
e

56
2.

1
s

95
3.

3
s

15
5

4.
9

s
24

0
7.

2
s

39
2

11
.4

s

A
rr

ay
D

eq
ue

ad
dF

irs
t

44
1.

2
s

77
1.

6
s

11
9

2.
1

s
17

9
2.

8
s

25
1

3.
7

s

ad
dL

as
t

44
1.

2
s

77
1.

5
s

11
9

2.
1

s
17

9
2.

7
s

25
1

3.
6

s

is
E

m
pt

y
56

1.
0

s
92

1.
4

s
14

1
1.

8
s

20
5

2.
3

s
28

6
3.

0
s

re
m

ov
eF

irs
t

56
1.

2
s

92
1.

6
s

14
1

2.
1

s
20

5
2.

9
s

28
6

3.
9

s

re
m

ov
eL

as
t

56
1.

3
s

92
1.

7
s

14
1

2.
3

s
20

5
3.

0
s

28
6

4.
0

s

A
rr

ay
Li

st
ad

d
6

0.
3

s
7

0.
3

s
8

0.
3

s
9

0.
4

s
10

0.
4

s

ge
t

2
0.

2
s

2
0.

2
s

2
0.

2
s

2
0.

2
s

2
0.

2
s

is
E

m
pt

y
2

0.
1

s
2

0.
1

s
2

0.
1

s
2

0.
1

s
2

0.
1

s

re
m

ov
e

6
0.

4
s

7
0.

4
s

8
0.

4
s

9
0.

5
s

10
0.

5
s

A
vl

Tr
ee

fin
d

12
3

3.
5

s
17

5
4.

8
s

43
0

12
.4

s
97

4
26

.9
s

18
10

55
.4

s

fin
dM

ax
15

1.
4

s
19

1.
6

s
36

3.
9

s
68

6.
3

s
11

2
9.

7
s

fin
dM

in
15

1.
4

s
19

1.
6

s
36

3.
9

s
68

6.
3

s
11

2
9.

7
s

in
se

rt
12

3
4.

0
s

17
5

5.
2

s
43

0
12

.9
s

97
4

29
.1

s
18

10
1.

0
m

in

is
E

m
pt

y
15

1.
1

s
19

1.
3

s
36

3.
4

s
68

5.
3

s
11

2
8.

0
s

272 Autom Softw Eng (2012) 19:233–301

Ta
bl

e
2

(C
on

ti
nu

ed
)

E
xa

m
pl

e
n

=
5

n
=

6
n

=
7

n
=

8
n

=
9

C
la

ss
M

et
ho

d
P

T
P

T
P

T
P

T
P

T

B
in

ar
yS

ea
rc

hT
re

e
fin

d
63

7
7.

2
s

23
53

26
.5

s
87

88
1.

8
m

in
33

09
8

8.
6

m
in

12
54

76
41

.8
m

in

fin
dM

ax
65

1.
9

s
19

7
4.

1
s

62
6

10
.8

s
20

56
35

.6
s

69
18

2.
3

m
in

fin
dM

in
65

1.
9

s
19

7
4.

1
s

62
6

11
.0

s
20

56
38

.0
s

69
18

2.
2

m
in

in
se

rt
63

7
7.

9
s

23
53

27
.4

s
87

88
1.

9
m

in
33

09
8

8.
3

m
in

12
54

76
39

.8
m

in

is
E

m
pt

y
65

1.
6

s
19

7
3.

3
s

62
6

8.
4

s
20

56
27

.2
s

69
18

1.
6

m
in

re
m

ov
e

63
7

6.
9

s
23

53
25

.8
s

87
88

1.
7

m
in

33
09

8
7.

9
m

in
12

54
76

41
.5

m
in

Li
nk

ed
Li

st
ad

d
6

0.
4

s
7

0.
4

s
8

0.
5

s
8

0.
5

s
8

0.
5

s

co
nt

ai
ns

97
2.

4
s

14
7

5.
2

s
21

2
19

.2
s

21
2

19
.2

s
21

2
19

.6
s

ge
t

27
0.

7
s

35
0.

8
s

44
0.

9
s

44
1.

0
s

44
1.

0
s

ge
tF

irs
t

6
0.

3
s

7
0.

4
s

8
0.

4
s

8
0.

4
s

8
0.

4
s

ge
tL

as
t

6
0.

3
s

7
0.

4
s

8
0.

4
s

8
0.

4
s

8
0.

4
s

is
E

m
pt

y
6

0.
3

s
7

0.
3

s
8

0.
3

s
8

0.
3

s
8

0.
3

s

re
m

ov
e

27
0.

7
s

35
0.

8
s

44
1.

0
s

44
1.

0
s

44
1.

0
s

re
m

ov
eF

irs
t

6
0.

4
s

7
0.

4
s

8
0.

4
s

8
0.

5
s

8
0.

5
s

re
m

ov
eL

as
t

6
0.

3
s

7
0.

4
s

8
0.

4
s

8
0.

4
s

8
0.

4
s

P
rio

rit
yQ

ue
ue

is
E

m
pt

y
6

0.
3

s
7

0.
3

s
8

0.
3

s
9

0.
3

s
10

0.
4

s

of
fe

r
25

0.
7

s
31

0.
8

s
38

0.
9

s
46

1.
0

s
54

1.
1

s

pe
ek

6
0.

3
s

7
0.

3
s

8
0.

3
s

9
0.

4
s

10
0.

4
s

po
ll

12
0.

5
s

19
0.

6
s

27
0.

7
s

35
0.

9
s

44
1.

0
s

S
ta

ck
is

E
m

pt
y

2
0.

1
s

2
0.

1
s

2
0.

1
s

2
0.

1
s

2
0.

1
s

pe
ek

2
0.

2
s

2
0.

2
s

2
0.

2
s

2
0.

2
s

2
0.

2
s

po
p

2
0.

3
s

2
0.

3
s

2
0.

3
s

2
0.

3
s

2
0.

3
s

pu
sh

6
0.

3
s

7
0.

3
s

8
0.

4
s

9
0.

4
s

10
0.

4
s

Autom Softw Eng (2012) 19:233–301 273

Ta
bl

e
2

(C
on

ti
nu

ed
)

E
xa

m
pl

e
n

=
5

n
=

6
n

=
7

n
=

8
n

=
9

C
la

ss
M

et
ho

d
P

T
P

T
P

T
P

T
P

T

Tr
ee

M
ap

ge
t

15
2

4.
0

s
36

0
9.

0
s

85
5

20
.0

s
18

07
43

.8
s

35
17

1.
5

m
in

is
E

m
pt

y
18

1.
5

s
34

3.
6

s
67

5.
9

s
12

3
10

.1
s

21
3

17
.1

s

la
st

K
ey

18
1.

7
s

34
3.

9
s

67
6.

4
s

12
3

11
.0

s
21

3
18

.3
s

pu
t

15
2

4.
6

s
36

0
9.

8
s

85
5

23
.4

s
18

07
47

.9
s

35
17

1.
6

m
in

re
m

ov
e

15
2

4.
3

s
36

0
9.

9
s

85
5

20
.7

s
18

07
48

.0
s

35
17

1.
6

m
in

Tr
ee

S
et

ad
d

15
2

5.
6

s
36

0
11

.0
s

85
5

25
.0

s
18

07
54

.1
s

35
17

1.
9

m
in

co
nt

ai
ns

15
2

5.
1

s
36

0
10

.1
s

85
5

24
.2

s
18

07
50

.2
s

35
17

1.
8

m
in

is
E

m
pt

y
18

2.
6

s
34

3.
9

s
67

6.
5

s
12

3
11

.1
s

21
3

19
.2

s

re
m

ov
e

15
2

5.
6

s
36

0
10

.4
s

85
5

23
.3

s
18

07
55

.1
s

35
17

1.
8

m
in

V
ec

to
r

ad
d

11
0.

4
s

13
0.

5
s

15
0.

5
s

17
0.

5
s

19
0.

6
s

ge
t

2
0.

2
s

2
0.

2
s

2
0.

2
s

2
0.

2
s

2
0.

2
s

is
E

m
pt

y
2

0.
1

s
2

0.
1

s
2

0.
1

s
2

0.
1

s
2

0.
1

s

274 Autom Softw Eng (2012) 19:233–301

6 Related work

6.1 Symbolic execution

The most closely related work to ours is Symbolic JPF, i.e., the SymExe extension
of JPF (Khurshid et al. 2003; Anand et al. 2007). Kiasan’s lazier and lazier# ini-
tialization algorithms are improvements over the lazy initialization algorithm of JPF
(Khurshid et al. 2003) as explained and empirically proved in the paper. In addi-
tion, the k-bounding technique described in Sect. 3.4 is a unique feature of Kiasan.
Moreover, we have introduced type variables to completely cover the subtyping issue
which was not sufficiently covered by Symbolic JPF.

Tools such as Pex (Tillmann and de Halleux 2008) and XRT (Grieskamp et al.
2005) represent the heap as pure logic formula and thus require decision procedures
(DP) that are able to handle heap structures. In contrast, our algorithms maintain
a graphical representation of the visible part of the heap and do not need a decision
procedure for heap structures. In fact, our algorithms can be viewed as an algorithmic
procedure that implements the functionality of heap structure handling capability of
DP. Besides a logic state representation, Smallfoot by Berdine et al. (2005) and jStar
by Distefano and Parkinson (2008) provide support for separation logic (Reynolds
2002). These tools also require special decision procedures that can handle separation
logic expressions.

There is a an interesting approach called concolic execution where symbolic and
concrete executions are applied simultaneously, and is demonstrated by tools such as
CUTE (Sen and Agha 2005) and Pex (Tillmann and de Halleux 2008). The approach
uses the concrete execution to cover branches and the symbolic execution to guide the
concrete execution to cover different branches. Essentially, the approach runs the pro-
gram to be tested multiple times with random inputs for the first run. Then, symbolic
execution is used to generate inputs for next concrete execution to cover different
branches. For example, given a condition x!=3, one concrete execution starts with
a random input such as x=1 and the true branch is covered; then the technique takes
the path condition from the symbolic execution, negates it, calls a constraint solver
with the negation of the path condition which is ¬(x �= 3), and gets x=3; the next
concrete execution will use that input to cover the false branch. The key advantage
of the approach is that the concrete execution can assist the symbolic execution for
solving certain types of complex arithmetic expressions by replacing symbolic ex-
pressions with concrete values. For example, given a condition y==h(x) where x
and y are parameters and h(x) is a difficult expression for decision procedures, for
example, h(x)=x*x*x*x. If one concrete execution uses input, say x=2 and y=1,
the condition clearly is false. To make the expression true, the symbolic execution
replaces h(x)=x*x*x*x with h(2)=16, that is, x=2 is used to compute the value
of y and get y=h(2)=16. Therefore, next concrete execution with x=2 and y=16
will make the expression true. Similarly, if h(x) is native code, the approach works
as well. However, this approach does not work for all types of the expressions, for
example, it could not solve expression g(x)==h(x), where g,h are complex ex-
pressions/native code. We believe that this concolic approach can be adapted to our
algorithms to handle native code and complex arithmetic.

Autom Softw Eng (2012) 19:233–301 275

6.2 Model checking

The closest model checking (Clarke et al. 2000) approach to Kiasan is explicit-state
model checking (which we abbreviate as model checking below) using depth-first
exploration strategy: both of them perform a forward path-sensitive analysis and can
check temporal properties.8 Model checking can be classified into two categories:
stateless and stateful, depending on whether it stores states. Our SymExe can be
seen as a stateless model checking. As a matter of fact, the initial version of Kiasan,
Bogor/Kiasan, was built on top of our homegrown software model checker, Bogor
(Robby et al. 2003). Despite the similarity, there are two major differences between
model checking and Kiasan SymExe algorithms:

– Model checking can only work on closed systems, that is, it needs some driver or
environment to analyze a module. SymExe is designed for systems with unknown
data: it uses symbols for representing unknown values.

– SymExe is more abstract than model checking (that uses no abstractions) since
it manipulates symbols instead of concrete values. Furthermore, each path in
SymExe corresponds to many concrete paths in model checking.

Another closely related approach is bounded model checking (Biere et al. 1999,
2003). Bounded model checkers (BMC) such as CBMC (Clarke et al. 2004) and SAT-
URN (Xie and Aiken 2007) take the approach that directly translates C programs into
SAT formulas and leverages the recent technical advancements in propositional SAT
solvers such as SATO (Zhang 1997) and CHAFF (Moskewicz et al. 2001). To enable
the translation, the tools bound loops and recursions. In contrast, Kiasan bounds data
first and then loops and recursions.

There have been other BMC techniques and tools, such as Alloy (Jackson 2002),
TestEra (Marinov and Khurshid 2001), Korat (Boyapati et al. 2002), PIPAL (Darga
and Boyapati 2006; Roberson and Boyapati 2010) that bound on data. Similarly to
Kiasan, they exhaustively explore some bounded search space. Furthermore, they use
various state space reduction techniques to scale to larger bounds. In particular, PI-
PAL leverages static and dynamic analysis that allow it to safely ignore many states
that are similar to the state currently been checked. The most important difference
between Kiasan and those tools is the state representation: Kiasan lazily expands the
heap while those tools fix the number of objects and their types as well as restricting
the range of values for scalars. In addition, Kiasan does not perform state subsump-
tion checking since it may be too expensive, while those tools can compare states
since they work on a fixed number of objects where all scalar ranges are restricted.
Furthermore, extra effort is required to avoid isomorphic states in those tools, while
Kiasan always only considers nonisomorphic states due to the way it expands heap
objects.

There is another interesting bounded approach, UDITA (Gligoric et al. 2010),
which exhaustively explores all the behaviors of test generation programs within
some bound using JPF. In contrast to Kiasan which is more of a white-box approach,

8Temporal properties (safety and bounded liveness) can be added in Kiasan by monitoring the finite state
automata constructed from the temporal properties similar to the translation by Geilen (2001).

276 Autom Softw Eng (2012) 19:233–301

UDITA is more of a black-box approach that uses some form of specification lan-
guage to generate test inputs. The underlying algorithm leverages the notion of de-
layed choice and postpones the choice until it is accessed which, in spirit, is similar
to Kiasan’s lazier and lazier# algorithms.

6.3 Shape analysis

One may think that the analysis performed by our SymExe is very similar to shape
analysis though the goal of our analysis is not restricted to searching for the shapes
of data structures. Shape analysis searches for a shape-wise invariant at each program
point. To cope with potentially infinite number of shapes a program point can have,
shape analysis either confines the size of a shape graph or represents a shape with a
finite number of access paths. The former, as was done by Chase et al. (1990) and
Sagiv et al. (2002) among many others, lumps the nodes of a shape graph, that are
indistinguishable from each other with respect to a certain perspective, into a single
node usually called summary node. In the latter that was used by Larus and Hilfinger
(1988) and Deutsch (1994) among many others, an access path represents all the
paths of shape graphs that satisfy a certain access pattern, and as a result, infinite
number of shape graphs can be summarized with finite number of access paths. At
first glance, a nonprimitive symbol (in short, a symbol from now on) of our analysis
such as a symbolic reference and a symbolic object seems to resemble a summary
node of shape analysis. Also, those who are familiar with the k-limiting of Jones and
Muchnick (1979) may think that our k-bounding is similar to it. They are, however,
more opposite than similar to each other.

First, we compare a symbol to a summary node. A symbol intends to represent
either NULL or a single location of the heap9; in contrast, a summary node represents
all locations in the heap that are indistinguishable from each other. This fundamen-
tal difference between a symbol and a summary node leads to the difference in the
precision of the analysis. The use of summary nodes is the main reason why shape
analysis suffers from the loss of precision and is property-dependent (a summariza-
tion may work for a property but may not well-suited for a different property), though
it also plays an important role in guaranteeing the termination of the analysis without
sacrificing the conservativeness of the analysis result. On the other hand, our anal-
ysis is precise with respect to any property that a user wants to check because we
resolve object-aliasing through case-splitting and never summarize object properties.
That is, in our analysis, the non-symbolic portion of a shape graph consisting of non-
symbolic locations and arcs between them depicts a precise shape of data structures
while symbols characterize unknown parts of data structures. Such a shape graph
reveals partial but precise information about the shape of data structures. This is in
contrast to a shape graph that is an inclusive but imprecise approximation (i.e., a
conservative overapproximation) of all possible shapes.

On the same line of thought, a symbol resolution and the materialization of a sum-
mary node are more different than they look. Materialization, suggested by Chase

9We explain the difference between a symbol and a summary node from the perspective of the lazier#
version for the sake of simplicity. Hence a symbol here refers to a symbolic reference.

Autom Softw Eng (2012) 19:233–301 277

et al. (1990), is an effective technique to improve the precision of shape analysis by
splitting a summary node, when necessary, into a non-summary node (i.e., a mate-
rialized node) and a new summary node that represents an original summary node
modulo the materialized node. Although such materialization bears resemblance to
the symbol resolution (during lazy initialization) of our analysis, the effects are not
the same. A shape graph obtained after materializing a summary node is still an over-
approximation, and the improved precision may not be sufficient. This is in contrast to
the symbol resolution of our analysis that is always precise assuming that the under-
lying theorem prover solves the given constraints correctly. Recall that our analysis
imposes constraints such as type constraints to exclude infeasible resolutions when
resolving a symbol.

The difference between our k-bounding and the k-limiting of Jones and Muchnick
can be viewed from the same precision perspective as well. Their k-limiting limits
the lengths of node paths of a given shape graph to k. A path longer than k is shrunk
to a shorter path that contains one or more of an abstract node which they call an un-
known node. Such an unknown node is closer to a summary node than to our symbol
in a sense that it may represent more than one node and can point to another node
without having to know which node it represents. Therefore, despite the seeming sim-
ilarity of k-limiting to k-bounding, k-limiting provides overapproximate information
about shapes with k-limiting graphs on the contrary that k-bounding coupled with our
lazier# initialization algorithm provides precise shape information up to the k bound.

Another main difference of our analysis from conventional shape analysis is
the path-sensitivity of SymExe. Most shape analysis methods are based on path-
insensitive data flow analysis to guarantee termination. Path-insensitivity is another
major cause of losing the precision of analysis. Once again, our analysis has its
strength in the precision point.

The trade-off in guaranteeing precision is that our analysis does not terminate on
its own if a module under analysis contains, for example, an iterative statement such
as a loop. We take a practical approach and address this problem with the bound-
ing technique; shapes beyond a user-specified bound are not considered. Conversely,
most shape analysis methods are guaranteed to terminate with all possible shapes
considered.

In short, our analysis and conventional shape analysis have different trade-off in
terms of the precision and the scope of shapes considered by analysis. Our analysis
supports accurate precision for any kind of property, but the analysis scope is limited.
Meanwhile, shape analysis guarantees full scope analysis but is property-dependent
and lacks precision.

The weakness of an analysis is often compensated for by providing additional
information. To improve the precision of shape analysis, additional information such
as node sharing, reachability and acyclicity is often exploited in many shape analysis
methods. If pre-defined additional information cannot improve the precision enough
to filter out false alarms, a user has to provide appropriate additional information
as a last resort as was done by Sagiv et al. (2002) with instrumentation predicates.
Meanwhile, to extend the shape scope of SymExe beyond the bound a bounding
technique provides, inductive assertions such as loop invariants should be exploited.
Simple patterns of assertions can be inferred automatically. If an automatic assertion

278 Autom Softw Eng (2012) 19:233–301

inference fails or an obtained assertion is not precise enough, a user has to provide an
appropriate one. Overall, a user sometimes needs to intervene and provide additional
necessary information in both analysis.

6.4 Java formal semantics

There have been many studies, e.g., Alves-Foss (1999), Drossopoulou and Eisen-
bach (1998), Bertelsen (2000), Gligoric et al. (2010) on formal semantics of Java:
Drossopoulou and Eisenbach (1998) provide Java source code semantics to show the
type soundness of the language; Bertelsen (2000) defines a formal semantics of JVM
bytecode; PIPAL (Gligoric et al. 2010) gives a formal semantics of symbolic exe-
cution of a Java-like language. The Kiasan’s bytecode semantics are very similar to
the above operational semantics, but using the semantics to prove the correctness of
generalized symbolic executions is unique to this work.

7 Conclusion and future work

This paper addresses two unresolved issues of the lazy initialization algorithm: rela-
tive inefficiency and lack of solid theoretical foundation. For the first issue, we have
described two improved algorithms (lazier and lazier#) that are more efficient than
the lazy initialization algorithm. In addition, the improved algorithms have a com-
plete coverage of the Liskov substitution principle which was covered insufficiently
by the original lazy initialization algorithm. For the second issue, we have formal-
ized the lazy initialization algorithm as well as the two improved algorithms on a
core subset of JVM instructions and proved the relative soundness and completeness
of the three algorithms. Furthermore, the algorithms have been realized in the Ki-
asan framework under the guidance of the formal semantics. Our experimental data
on realistic benchmarks show more than ten times reduction of the lazier and lazier#
initialization algorithms over the lazy initialization algorithm in terms of analysis
time and the number of explored paths, and hence demonstrate the efficiency of our
algorithms.

We have two directions of future work: modular/contract reasoning and abstrac-
tion. In modular reasoning, contracts can be used to substitute program components.
This would allow the tool to scale to larger systems, as the systems can be divided
into smaller units more amenable for analysis. We would also like to introduce ab-
stractions to handle commonly used data structures and their properties. For exam-
ple, when analyzing Java programs using strings, it would be more efficient to use
string models/abstractions/theories (Hopcroft and Ullman 1979) than to use the actual
java.lang.String class implementation in the standard Java library. In short,
we believe that both contracts and customized abstract models would be crucial to
further scale SymExe.

Acknowledgements This work was supported in part by the US National Science Foundation (NSF)
award 0709169 and CAREER award 0644288, the US Air Force Office of Scientific Research (AFOSR),
and Rockwell Collins. The second author was also partially supported by the Engineering Research Center
of Excellence Program of Korea Ministry of Education, Science and Technology (MEST) / National Re-
search Foundation of Korea (NRF) (Grant 2010-0001727), and a Korea University Grant. We would also
like to thank Kathy Brode for proofreading the draft of this article.

Autom Softw Eng (2012) 19:233–301 279

Appendix A: Formalization of the swap example

A.1 Bytecode execution of swap in JVM

We briefly walk through the execution of the bytecode instructions of the swap
method. The two most important components of the state of JVM are the operand
stack and the local variable array. Before a method execution starts, the operand stack
is empty. The local variable array is initialized with two values corresponding to the
method’s two parameters (including the implicit parameter this): the value of this
is stored at array index 0, n at index 1. Note local index 2 is reserved for local vari-
able e. The Java statement e = data is translated into instructions 0, 1, and 4 of
Program 3. Instruction 0 (aload_0) loads the value of this onto the operand stack;
instruction 1 (getfield #2) reads the value of this.data and pushes it onto
the operand stack; instruction 4 (astore_2) stores the value of this.data to the
local variable at index 2 which corresponds to variable e.

Instructions 5, 6, 7, and 10 correspond to the Java statement data = n.data.
Instruction 5 (aload_0) is the same as instruction 0; instruction 6 (aload_1) loads
the value of n onto the operand stack; instruction 7 (getfield #2) loads the value
of n.data onto the operand stack; instruction 10 (putfield #2) writes the value
on the top of the stack (i.e., n.data) to this.data.

Finally, statement n.data = e is translated into instructions 13, 14, and 15.
Instruction 13 (aload_1) loads the value of n onto the operand stack; instruction 14
(aload_2) loads the value of e, which is equal to the value of this.data at this
time, onto the operand stack; instruction 15 (putfield #2) writes the top value
from the stack (i.e., the value of e) into n.data. Now, the swap of this.data
and n.data is done.

A.2 Formalization of states

To illustrate the formalization of states in SEL, SELA, and SELB, we use the swap
method shown in Program 1 as an example. Recall that the bytecode of the swap
method is shown in Program 3. We pick one state from each semantics: state 33 in

Program 3 The bytecode of the swap method

public void swap (Container) ;
Code :

0 : aload_0
1: g e t f i e l d #2; / / F i e l d data : Ljava / lang / Object ;
4 : astore_2
5 : aload_0
6: aload_1
7: g e t f i e l d #2; / / F i e l d data : Ljava / lang / Object ;
10: p u t f i e l d #2; / / F i e l d data : Ljava / lang / Object ;
13: aload_1
14: aload_2
15: p u t f i e l d #2; / / F i e l d data : Ljava / lang / Object ;
18: return

280 Autom Softw Eng (2012) 19:233–301

Fig. 2, state 22 in Fig. 3, and state 11 in Fig. 4 for SEL, SELA, and SELB respectively.
All the three states are the states after executing the statement e = data which
corresponds to bytecode instructions 0, 1, and 4. Since the program counter of each
state will point to the next instruction to be executed, the program counters of all
states should be 5.

State 33 in the lazy symbolic execution tree of the swap example can be formal-
ized as follows:

– globals, since the swap method does not refer to any static field, then we let the
global component be empty: ∅.

– program counter, pc = 5.
– locals, there are two parameters, this and n, and one local variable, e. So locals =

{0 �→ l0,1 �→ l1,2 �→ l1} where l0 and l1 are heap locations of α0 and α1. Recall
that we view a function as a set of pairs.

– stack, the stack is empty, nil.
– heap, there are two objects in the heap: α0 = {data �→ l1}τ0 and α1 = {}τ1 . So the

heap = {l0 �→ {data �→ l1}τ0, l1 �→ {}τ1}, where l0 and l1 are two arbitrary locations
satisfying l0 �= l1.

– path condition, there are two type constraints in the path condition: φ = {τ0 <:
Container, τ1 <: Container}.

Therefore, the formalization of state 33 is:

(∅,5, {0 �→ l0,1 �→ l1,2 �→ l1},nil, {l0 �→ {data �→ l1}τ0, l1 �→ {}τ1}, φ),

where φ = {τ0 <: Container, τ1 <: Container}.
Similarly, the formalization of state 22 in the lazier symbolic execution tree of the

swap example shown in Fig. 3 is:

(∅,5, {0 �→ l0,1 �→ α̂1,2 �→ β̂0},nil, {l0 �→ {data �→ β̂0}τ }, {τ <: Container}),
where α̂1 has the type of Container and β̂0 has the type of Object.

The formalization of state 11 in the lazier# symbolic execution tree of the swap
example shown in Fig. 4 is:

(∅,5, {0 �→ l0,1 �→ α̂1,2 �→ β̄0},nil, {l0 �→ {data �→ β̄0}τ }, {τ <: Container}),
where α̂1 has the type of Container and β̄0 has the type of Object.

A.3 Formalization of initial states

We will use the swap method shown in Program 1 as an example to show the for-
malizations of initial states in SEL, SELA, and SELB.

In SEL, there are three nonisomorphic initial states:

1. State 1 in Fig. 2, (∅,0, {0 �→ l,1 �→ NULL},nil, {l �→ ∅τ }, {τ <: Container}).
2. State 2 in Fig. 2, (∅,0, {0 �→ l,1 �→ l},nil, {l �→ ∅τ }, {τ <: Container}).
3. State 3 in Fig. 2, (∅,0, {0 �→ l0,1 �→ l1},nil, {l0 �→ ∅τ0, l1 �→ ∅τ1}, φ), where φ =

{τ0 <: Container, τ1 <: Container}.

Autom Softw Eng (2012) 19:233–301 281

In SELA, there are two nonisomorphic initial states:

1. State 1 in Fig. 3, (∅,0, {0 �→ α̂0,1 �→ NULL},nil,∅,∅), where the type of α̂0 is
Container. Note that there are three empty sets that appear in the state: globals,
the heap, and the path condition. Each empty set has different meaning. The global
component is an empty function, that is, the domain set is empty. The heap is a
partial function that has nothing defined yet. The path condition has no formula
yet which means TRUE.

2. State 2 in Fig. 3, (∅,0, {0 �→ α̂0,1 �→ α̂1},nil,∅,∅), where α̂0 and α̂1 have the
same type, Container.

In SELB, there is only one nonisomorphic initial state, (∅,0, {0 �→ α̂0,1 �→
ᾱ1},nil,∅,∅). After applying the NV optimization, we get the State 1 in Fig. 4,
(∅,0, {0 �→ α̂0,1 �→ α̂1},nil,∅,∅).

A.4 Formalization of a lazy trace

Figure 13 shows the formalization of the highlighted trace (i.e., trace 3-33-334-3341)
in Fig. 2. Recall that the bytecode of the swap example is listed in Program 3.

A.5 Formalization of a lazier trace

Figure 14 shows the formalization of the highlighted trace (i.e., trace 2-22-223-2231)
in Fig. 3.

A.6 Formalization of a lazier# trace

Figure 15 shows the formalization of the highlighted trace (i.e., trace 1-11-112-1121)
in Fig. 4.

Appendix B: Concrete semantic rules

The concrete JVM bytecode operational semantic rules are divided into five cate-
gories: load and store instruction rules, arithmetic instruction rules, object creation
and manipulation instruction rules, control transfer instruction rules, and assume
and assert instruction rules. We use the binding σ = (g,pc, ξ,ω,h, TRUE) for all
the rules.

Load and store instruction rules (shown in Fig. 16) Instruction aload_n reads
the local variable at local index n and puts it onto the stack as illustrated by rule
ALOAD-C and astore_n stores the top stack value to the local variable at index n

as shown in ASTORE-C.

Arithmetic instruction rules (shown in Fig. 17) Instruction iadd adds two integers
from the top of the stack and puts the result back onto the stack. The semantics of
iadd is represented by rule IADD-C. Similarly, the semantics of isub is shown in
rule ISUB-C.

282 Autom Softw Eng (2012) 19:233–301

(∅,0, {0 �→ l0,1 �→ l1},nil, {l0 �→ ∅τ0 , l1 �→ ∅τ1 }, φ)

AL⇒S (∅,1, {0 �→ l0,1 �→ l1}, l0 ::nil, {l0 �→ ∅τ0 , l1 �→ ∅τ1 }, φ)

G4⇒S (∅,4, {0 �→ l0,1 �→ l1}, l1 ::nil, {l0 �→ {data �→ l1}τ0 , l1 �→ ∅τ1}, φ)

AS⇒S (∅,5, {0 �→ l0,1 �→ l1,2 �→ l1},nil, {l0 �→ {data �→ l1}τ0 , l1 �→ ∅τ1}, φ)

AL⇒S (∅,6, {0 �→ l0,1 �→ l1,2 �→ l1}, l0 ::nil, {l0 �→ {data �→ l1}τ0 , l1 �→ ∅τ1 }, φ)

AL⇒S (∅,7, {0 �→ l0,1 �→ l1,2 �→ l1}, l1 ::l0 ::nil, {l0 �→ {data �→ l1}τ0 , l1 �→ ∅τ1 }, φ)

G6⇒S (∅,10, {0 �→ l0,1 �→ l1,2 �→ l1}, l2 ::l0 ::nil, {l0 �→ {data �→ l1}τ0 ,

l1 �→ {data �→ l2}τ1 , l2 �→ ∅τ2}, φ ∪ {τ2 <: Object})
P 1⇒S (∅,13, {0 �→ l0,1 �→ l1,2 �→ l1},nil, {l0 �→ {data �→ l2}τ0 , l1 �→ {data �→ l2}τ1 ,

l2 �→ ∅τ2}, φ ∪ {τ2 <: Object})
AL⇒S (∅,14, {0 �→ l0,1 �→ l1,2 �→ l1}, l1 ::nil, {l0 �→ {data �→ l2}τ0 , l1 �→ {data �→ l2}τ1 ,

l2 �→ ∅τ2}, φ ∪ {τ2 <: Object})
AL⇒S (∅,15, {0 �→ l0,1 �→ l1,2 �→ l1}, l1 ::l1 ::nil, {l0 �→ {data �→ l2}τ0 ,

l1 �→ {data �→ l2}τ1 , l2 �→ ∅τ2}, φ ∪ {τ2 <: Object})
P 1⇒S (∅,18, {0 �→ l0,1 �→ l1,2 �→ l1},nil, {l0 �→ {data �→ l2}τ0 , l1 �→ {data �→ l1}τ1 ,

l2 �→ ∅τ2}, φ ∪ {τ2 <: Object}),
where φ = {τ0 <: Container, τ1 <: Container}; AL stands for the ALOAD-S rule; G4
stands for the GETFIELD4-S rule; AS stands for the ASTORE-S rule; G6 stands for the
GETFIELD6-S rule; P1 stands for the PUTFIELD1-S rule.

Fig. 13 Formalization of the trace 3-33-334-3341 in Fig. 2

Object creation and manipulation instruction rules We have listed rules for instruc-
tions new τ , getfield f , putfield f , anewarray τ , iastore, iaload,
instanceof τ , and checkcast τ in Figs. 18 and 19. We will discuss rules for
each instruction as follows:

– Instruction new τ creates a fresh object of type τ and puts it into the heap. Formal
semantics of the instruction is described in rule NEW-C. The fresh object is created
by the new-obj function (defined in List 2) which initializes each of the field of type
τ to its initial value.

– Instruction getfield f reads the f field of an object which is indexed by
the location on the top of the stack. It has two semantic rules: GETFIELD1-C
and GETFIELD2-C. Rule GETFIELD1-C handles the normal case while rule
GETFIELD2-C covers the NULL dereference case.

Autom Softw Eng (2012) 19:233–301 283

(∅,0, {0 �→ α̂0,1 �→ α̂1},nil,∅,∅)

AL⇒A(∅,1, {0 �→ α̂0,1 �→ α̂1}, α̂0 ::nil,∅,∅)

G2A⇒ A(∅,1, {0 �→ l0,1 �→ α̂1}, l0 ::nil, {l0 �→ ∅τ0 }, {τ0 <: Container})
G3A⇒ A(∅,4, {0 �→ l0,1 �→ l1}, β̂0 ::nil, {l0 �→ {data �→ β̂0}τ0 }, {τ0 <: Container})

AS⇒A(∅,5, {0 �→ l0,1 �→ l1,2 �→ β̂0},nil, {l0 �→ {data �→ β̂0}τ0 }, {τ0 <: Container})
AL⇒A(∅,6, {0 �→ l0,1 �→ α̂1,2 �→ β̂0}, l0 ::nil, {l0 �→ {data �→ β̂0}τ0 }, {τ0 <: Container})
AL⇒A(∅,7, {0 �→ l0,1 �→ α̂1,2 �→ β̂0}, α̂1 ::l0 ::nil, {l0 �→ {data �→ β̂0}τ0 }, {τ0 <: Container})

G2A⇒ A(∅,7, {0 �→ l0,1 �→ l1,2 �→ β̂0}, l1 ::l0 ::nil, {l0 �→ {data �→ β̂0}τ0 , l1 �→ ∅τ1 }, φ)

G3A⇒ A(∅,10, {0 �→ l0,1 �→ l1,2 �→ β̂0}, β̂1 ::l0 ::nil, {l0 �→ {data �→ β̂0}τ0 , l1 �→ {data �→ β̂1}τ1 }, φ)

P 1⇒A(∅,13, {0 �→ l0,1 �→ l1,2 �→ β̂0},nil, {l0 �→ {data �→ β̂1}τ0 , l1 �→ {data �→ β̂1}τ1 }, φ)

AL⇒A(∅,14, {0 �→ l0,1 �→ l1,2 �→ β̂0}, l1 ::nil, {l0 �→ {data �→ β̂1}τ0 , l1 �→ {data �→ β̂1}τ1 }, φ)

AL⇒A(∅,15, {0 �→ l0,1 �→ l1,2 �→ β̂0}, β̂0 ::l1 ::nil, {l0 �→ {data �→ β̂1}τ0 , l1 �→ {data �→ β̂1}τ1 }, φ)

P 1⇒A(∅,18, {0 �→ l0,1 �→ l1,2 �→ β̂0},nil, {l0 �→ {data �→ β̂1}τ0 , l1 �→ {data �→ β̂0}τ1 }, φ),

where φ = {τ0 <: Container, τ1 <: Container}; AL stands for the ALOAD-S rule; G2A stands for the
GETFIELD2-A rule; AS stands for the ASTORE-S rule; G3A stands for the GETFIELD3-A
rule; P1 stands for the PUTFIELD1-S rule.

Fig. 14 Formalization of the trace 2-22-223-2231 in Fig. 3

– Instruction putfield f writes a value to field f of an object. The value and
location of the object are on the top of the stack. There are two rules for putfield
f : PUTFIELD1-C and PUTFIELD2-C. PUTFIELD1-C handles the normal case
and PUTFIELD2-C is for the case that the object is NULL.

– Instruction instanceof τ tests whether the type of an object is a subtype
of τ . According to the JVM specification Lindholm and Yellin (1999), if the ob-
ject is NULL, the test returns FALSE; if the object is non-NULL and the type
of the object is a subtype of τ , it returns TRUE; otherwise, it returns FALSE.
Rule INSTANCEOF1-C represents the NULL case, and INSTANCEOF2-C and
INSTANCEOF3-C handle the non-NULL case. Note that in JVM, 0 is used for
FALSE and 1 for TRUE.

– Instruction checkcast τ is very similar to instruction instanceof. Both of
them test whether the type of an object is a subtype of another type. However, there
are two differences: first is that if the operand is NULL, the test passes; second is
that the instruction does not return any value—if the test passes, it does nothing;
otherwise it throws a ClassCastException exception. Rule CHECKCAST1-C rep-
resents the NULL case; CHECKCAST2-C and CHECKCAST3-C handle the non-
NULL case.

284 Autom Softw Eng (2012) 19:233–301

(∅,0, {0 �→ α̂0,1 �→ α̂1},nil,∅,∅)

AL⇒B (∅,1, {0 �→ α̂0,1 �→ α̂1}, α̂0 ::nil,∅,∅)

G2A⇒ B (∅,1, {0 �→ l0,1 �→ α̂1}, l0 ::nil, {l0 �→ ∅τ0 }, {τ0 <: Container})
G3B⇒ B (∅,4, {0 �→ l0,1 �→ l1}, β̄0 ::nil, {l0 �→ {data �→ β̄0}τ0 }, {τ0 <: Container})

AS⇒B (∅,5, {0 �→ l0,1 �→ l1,2 �→ β̄0},nil, {l0 �→ {data �→ β̄0}τ0 }, {τ0 <: Container})
AL⇒B (∅,6, {0 �→ l0,1 �→ α̂1,2 �→ β̄0}, l0 ::nil, {l0 �→ {data �→ β̄0}τ0 }, {τ0 <: Container})
AL⇒B (∅,7, {0 �→ l0,1 �→ α̂1,2 �→ β̄0}, α̂1 ::l0 ::nil, {l0 �→ {data �→ β̄0}τ0 }, {τ0 <: Container})

G2A⇒ B (∅,7, {0 �→ l0,1 �→ l1,2 �→ β̄0}, l1 ::l0 ::nil, {l0 �→ {data �→ β̄0}τ0 , l1 �→ ∅τ1 }, φ)

G3B⇒ B (∅,10, {0 �→ l0,1 �→ l1,2 �→ β̄0}, β̄1 ::l0 ::nil, {l0 �→ {data �→ β̄0}τ0 , l1 �→ {data �→ β̄1}τ1 }, φ)

P 1⇒B (∅,13, {0 �→ l0,1 �→ l1,2 �→ β̄0},nil, {l0 �→ {data �→ β̄1}τ0 , l1 �→ {data �→ β̄1}τ1 }, φ)

AL⇒B (∅,14, {0 �→ l0,1 �→ l1,2 �→ β̄0}, l1 ::nil, {l0 �→ {data �→ β̄1}τ0 , l1 �→ {data �→ β̄1}τ1 }, φ)

AL⇒B (∅,15, {0 �→ l0,1 �→ l1,2 �→ β̄0}, β̄0 ::l1 ::nil, {l0 �→ {data �→ β̄1}τ0 , l1 �→ {data �→ β̄1}τ1 }, φ)

P 1⇒B (∅,18, {0 �→ l0,1 �→ l1,2 �→ β̄0},nil, {l0 �→ {data �→ β̄1}τ0 , l1 �→ {data �→ β̄0}τ1 }, φ),

where φ = {τ0 <: Container, τ1 <: Container}; AL stands for the ALOAD-S rule; G2A stands for the
GETFIELD2-A rule; G3B stands for the GETFIELD3-B rule; AS stands for the ASTORE-S
rule; P1 stands for the PUTFIELD1-S rule.

Fig. 15 Formalization of the trace 1-11-112-1121 in Fig. 4

Fig. 16 Load and store
instruction rules in concrete
JVM ALOAD-C

code(pc) = aload_n

σ ⇒C (g,next(pc), ξ, ξ(n)::ω,h, TRUE)

ASTORE-C
code(pc) = astore_n ω = v ::ω′

σ ⇒C (g,next(pc), ξ [n �→ v],ω′, h, TRUE)

Fig. 17 Rules for arithmetic
instructions in concrete JVM IADD-C

code(pc) = iadd ω = c1 ::c2 ::ω′

σ ⇒C (g,next(pc), ξ, (c1 + c2)::ω′, h, TRUE)

ISUB-C
code(pc) = isub ω = c1 ::c2 ::ω′

σ ⇒C (g,next(pc), ξ, (c2 − c1)::ω′, h, TRUE)

– Instruction anewarray τ creates a new array with the length on the top of the
operand stack. The new array has all the indexes initialized with the default value
of the element type by the new-carr function shown in List 2. ANEWARRAY1-C

Autom Softw Eng (2012) 19:233–301 285

NEW-C
code(pc) = new τ

σ ⇒C (g,next(pc), ξ, l ::ω,h[l �→ new-obj(symbols(σ), τ)], TRUE)

where l �∈ domh

GETFIELD1-C
code(pc) = getfield f ω = l ::ω′

σ ⇒C (g,next(pc), ξ, h(l)(f)::ω′, h, TRUE)

GETFIELD2-C
code(pc) = getfield f ω = NULL ::ω′

σ ⇒C NullPointerException, (g,pc, ξ,ω,h, TRUE)

PUTFIELD1-C
code(pc) = putfield f ω = v ::l ::ω′

σ ⇒C (g,next(pc), ξ,ω′, h[l �→ h(l)[f �→ v]], TRUE)

PUTFIELD2-C
code(pc) = putfield f ω = v ::NULL ::ω′

σ ⇒C NullPointerException, (g,pc, ξ,ω,h, TRUE)

INSTANCEOF1-C
code(pc) = instanceof τ ω = NULL ::ω′

σ ⇒C (g,next(pc), ξ,0::ω′, h, TRUE)

INSTANCEOF2-C
code(pc) = instanceof τ ω = l ::ω′ ατ1 = h(l) τ1 <: τ

σ ⇒C (g,next(pc), ξ,1::ω′, h, TRUE)

INSTANCEOF3-C
code(pc) = instanceof τ ω = l ::ω′ ατ1 = h(l) τ1 �<: τ

σ ⇒C (g,next(pc), ξ,0::ω′, h, TRUE)

CHECKCAST1-C
code(pc) = checkcast τ ω = NULL ::ω′

σ ⇒C (g,next(pc), ξ,ω,h, TRUE)

CHECKCAST2-C
code(pc) = checkcast τ ω = l ::ω′ ατ1 = h(l) τ1 <: τ

σ ⇒C (g,next(pc), ξ,ω,h, TRUE)

CHECKCAST3-C

code(pc) = checkcast τ ω = l ::ω′ ατ1 = h(l) τ1 �<: τ
σ ⇒C ClassCastException, (g,pc, ξ,ω,h, TRUE)

Fig. 18 Rules for object creation and manipulation instructions in concrete JVM

denotes the case of a non-negative length and ANEWARRAY2-C describes the case
of a negative length.

– Instruction iastore writes an integer value into an integer array. There are three
rules for the instruction: IASTORE1-C, IASTORE2-C, and IASTORE3-C. Rule
IASTORE1-C is for the array index out of bound case. Rule IASTORE2-C handles
the normal case that the index is in bound. IASTORE3-C presents the case that the
array is NULL which results in a NullPointerException.

– Instruction iaload reads the value from an index of an array. The semantic rules
are symmetrical to the rules for instruction iastore.

286 Autom Softw Eng (2012) 19:233–301

ANEWARRAY1-C
code(pc) = anewarray τ ω = c ::ω′ c ≥ 0

σ ⇒C (g,next(pc), ξ, l ::ω′, h[l �→ new-carr(symbols(σ), τ, c)], TRUE)

where l �∈ domh

ANEWARRAY2-C
code(pc) = anewarray τ ω = c ::ω′ c < 0

σ ⇒C NegativeArraySizeException, (g,pc, ξ,ω,h, TRUE)

IASTORE1-C
code(pc) = iastore ω = c2 ::c1 ::l ::ω′ c1 < 0 ∨ c1 ≥ h(l)(LEN)

σ ⇒C ArrayIndexOutOfBoundsException, (g,pc, ξ,ω,h, TRUE)

IASTORE2-C
code(pc) = iastore ω = c2 ::c1 ::l ::ω′ 0 ≤ c1 < h(l)(LEN)

σ ⇒C (g,next(pc), ξ,ω′, h[l �→ h(l)[c1 �→ c2]], TRUE)

IASTORE3-C
code(pc) = iastore ω = c2 ::c1 ::NULL ::ω′

σ ⇒C NullPointerException, (g,pc, ξ,ω,h, , TRUE)

IALOAD1-C
code(pc) = iaload ω = c ::l ::ω′ c < 0 ∨ c ≥ h(l)(LEN)

σ ⇒C ArrayIndexOutOfBoundsException, (g,pc, ξ,ω,h, TRUE)

IALOAD2-C
code(pc) = iaload ω = c ::l ::ω′ 0 ≤ c < h(l)(LEN)

σ ⇒C (g,next(pc), ξ, h(l)(c)::ω′, h, TRUE)

IALOAD3-C
code(pc) = iaload ω = c ::NULL ::ω′

σ ⇒C NullPointerException, (g,pc, ξ,ω,h, TRUE)

Fig. 19 Rules for object creation and manipulation instruction (2) in concrete JVM

Control transfer instruction rules (shown in Fig. 20) Instruction if_icmplt
checks if the second topmost operand of integer type is less than the topmost operand.
If it is the case then the execution jumps to the operand of the instruction (rule
IF_ICMPLT1-C); otherwise, the execution will simply move to the next instruction
(rule IF_ICMPLT2-C).

Similar to if_icmpt, instruction if_acmpeq checks the equality between two
object references (which may be NULL) on the top of the stack and the execution will
branch if the equality holds.

Instruction ifnull does a NULL-ness test of the top of the operand and the
execution jumps if it is NULL. IFNULL1-C is for the non-NULL case and IFNULL2-C
is for the NULL case.

Instruction ifnonnull does the opposite of ifnull.

Rules for the assume and assert instructions (shown in Fig. 21) The semantics
for assume and assert are standard: if the top of the stack is true, assume and
assert do nothing; otherwise, assume terminates the execution silently by making
path condition FALSE, while assert signals an error and terminates the execution.
Discussion: We do not use the wraparound semantics for integral types be-

cause it complicates the presentation of operational semantics. In addition, we do not
check bugs introduced by integer wrapping around in symbolic executions. However,
wraparound can be supported by using appropriate decision procedures that model
integers using bit-vectors.

Autom Softw Eng (2012) 19:233–301 287

IF_ICMPLT1-C
code(pc) = if_icmplt pc′ ω = c2 ::c1 ::ω′ c1 < c2

σ ⇒C (g,pc′, ξ,ω′, h, TRUE)

IF_ICMPLT2-C
code(pc) = if_icmplt pc′ ω = c2 ::c1 ::ω′ c2 ≤ c1

σ ⇒C (g,next(pc), ξ,ω′, h, TRUE)

IF_ACMPEQ1-C
code(pc) = if_acmpeq pc′ ω = v1 ::v2 ::ω′ v1 �= v2

σ ⇒C (g,next(pc), ξ,ω′, h, TRUE)

IF_ACMPEQ2-C
code(pc) = if_acmpeq pc′ ω = v1 ::v2 ::ω′ v1 = v2

σ ⇒C (g,pc′, ξ,ω′, h, TRUE)

IFNULL1-C
code(pc) = ifnull pc′ ω = l ::ω′

σ ⇒C (g,next(pc), ξ,ω′, h, TRUE)

IFNULL2-C
code(pc) = ifnull pc′ ω = NULL ::ω′

σ ⇒C (g,pc′, ξ,ω′, h, TRUE)

IFNONNULL1-C
code(pc) = ifnonnull pc′ ω = l ::ω′

σ ⇒C (g,pc′, ξ,ω′, h, TRUE)

IFNONNULL2-C
code(pc) = ifnonnull pc′ ω = NULL ::ω′

σ ⇒C (g,next(pc), ξ,ω′, h, TRUE)

Fig. 20 Rules for control transfer instructions in concrete JVM

Fig. 21 Rules for assume and
assert instructions in
concrete JVM

ASSUME1-C
code(pc) = assume ω = 0::ω′

σ ⇒C (g,next(pc), ξ,ω′, h, FALSE)

ASSUME2-C
code(pc) = assume ω = 1::ω′

σ ⇒C (g,next(pc), ξ,ω′, h, TRUE)

ASSERT1-C
code(pc) = assert ω = 0::ω′

σ ⇒C ERROR, (g,pc, ξ,ω,h, TRUE)

ASSERT2-C
code(pc) = assert ω = 1::ω′

σ ⇒C (g,next(pc), ξ,ω′, h, TRUE)

Appendix C: Lazier semantic rules

As described in Sect. 3, SELA (Symbolic Execution with Lazier Initialization) is dis-
tinguished from SEL in the use of symbolic locations. Therefore, in general, SELA
semantic rules are the same as the SEL semantic rules unless symbolic locations
are involved. Symbolic locations can be used as operands of an instruction or pro-
duced by the instruction, getfield. For each symbolic location that appears in the
operands of an instruction, there are two possibilities: the symbolic location is “con-

288 Autom Softw Eng (2012) 19:233–301

IF_ACMPEQ1-A
code(pc) = if_acmpeq pc′ ω = α̂τ ::α̂τ ::ω′

σ ⇒A (g,pc′, ξ,ω′, h,φ)

IF_ACMPEQ2-A
code(pc) = if_acmpeq pc′ ω = α̂τ ::v ::ω′

σ ⇒A (g,pc, ξ,ω,h,φ ∪ {τ ′ <: τ })[l/α̂] where l ∈ collect(h),h(l) = ατ ′

IF_ACMPEQ3-A
code(pc) = if_acmpeq pc′ ω = α̂τ ::v ::ω′ τ ∈ RType

σ ⇒A (g,pc, η∗(ξ),ω,h[l �→ ατ ′], φ ∪ {τ ′ <: τ }[l/α̂]
where l /∈ domh,ατ ′ = new-sym(symbols(σ))

IF_ACMPEQ4-A
code(pc) = if_acmpeq pc′ ω = α̂τ ::v ::ω′ τ ∈ AType

σ ⇒A (g,pc, ξ,ω,h[l �→ ατ ′], φ ∪ {τ ′ <: τ,0 ≤ α(LEN)})[l/α̂]
where l /∈ domh,ατ ′ = new-sarr(symbols(σ))

IF_ACMPEQ5-A
code(pc) = if_acmpeq pc′ ω = v ::α̂τ ::ω′

σ ⇒A (g,pc, η∗(ξ),ω,h,φ ∪ {τ ′ <: τ })[l/α̂] where l ∈ collect(h),h(l) = ατ ′

IF_ACMPEQ6-A
code(pc) = if_acmpeq pc′ ω = v ::α̂τ ::ω′ τ ∈ RType

σ ⇒A (g,pc, ξ,ω,h[l �→ ατ ′], φ ∪ {τ ′ <: τ })[l/α̂]
where l /∈ domh,ατ ′ = new-sym(symbols(σ))

IF_ACMPEQ7-A
code(pc) = if_acmpeq pc′ ω = v ::α̂τ ::ω′ τ ∈ AType

σ ⇒A (g,pc, ξ,ω,h[l �→ ατ ′], φ ∪ {τ ′ <: τ,0 ≤ α(LEN)})[l/α̂]
where l /∈ domh,ατ ′ = new-sarr(symbols(σ))

IFNULL-A
code(pc) = ifnull pc′ ω = α̂ ::ω′

σ ⇒A (g,next(pc), ξ,ω′, h,φ)

IFNONNULL-A
code(pc) = ifnonnull pc′ ω = α̂ ::ω′

σ ⇒A (g,pc′, ξ,ω′, h,φ)

Fig. 22 Additional rules control transfer instructions in SELA

sumed” (used) or just “transferred.” If a symbolic location is consumed by an instruc-
tion, it is resolved to a location except ifnull and ifnonnull which leverage
symbolic locations directly. If a symbolic location is just transferred by an instruc-
tion, then the rules in SELA should be the same as the ones in SEL. Recall that the
bytecode instructions that we cover are classified into five categories: (1) load and
store instruction, (2) arithmetic instruction, (3) object creation and manipulation in-
struction, (4) control transfer instruction, and (5) assume and assert instruction.
The rules for instructions in (1), (2), and (5) are the same as the ones in SEL since
instructions in (1) only transfer symbolic locations; and instructions in (2) and (5)
have no symbolic location operand. We only need to discuss rules for (3) and (4).
We will first explain rules for (4) and then (3) for clarity. Since the large portions
of the SELA semantic rules are shared with the ones of SEL, we present only the
additional rules of SELA in this subsection. As in the SEL rules, we use the binding
σ = (g,pc, ξ,ω,h,φ), and all the end states with unsatisfiable path conditions are
ignored.

Autom Softw Eng (2012) 19:233–301 289

GETFIELD1-A
code(pc) = getfield f ω = α̂τ ::ω′

σ ⇒A (g,pc, ξ,ω,h,φ ∪ {τ ′ <: τ })[l/α̂] where l ∈ collect(h),h(l) = ατ ′

GETFIELD2-A
code(pc) = getfield f ω = α̂τ ::ω′

σ ⇒A (g,pc, ξ,ω,h[l �→ ατ ′], φ ∪ {τ ′ <: τ })[l/α̂]
where l /∈ domh,ατ ′ = new-sym(symbols(σ))

GETFIELD3-A
code(pc) = getfield fτ ω = l ::ω′ h(l)(fτ)↑ τ ∈ NPType

σ ⇒A (g,next(pc), ξ, α̂τ ::ω′, h[l �→ h(l)[fτ �→ α̂τ]], φ)

where α̂ is fresh

PUTFIELD1-A
code(pc) = putfield f ω = v ::α̂τ ::ω′

σ ⇒A (g,pc, ξ,ω,h,φ ∪ {τ ′ <: τ })[l/α̂] where l ∈ collect(h),h(l) = ατ ′

PUTFIELD2-A
code(pc) = putfield f ω = v ::α̂τ ::ω′

σ ⇒A (g,pc, ξ,ω,h[l �→ ατ ′], φ ∪ {τ ′ <: τ })[l/α̂]
where l /∈ domh,ατ ′ = new-sym(symbols(σ))

IASTORE1-A
code(pc) = iastore ω = v ::i ::α̂τ ::ω′

σ ⇒A (g,pc, ξ,ω,h,φ ∪ {τ ′ <: τ })[l/α̂] where l ∈ collect(h),h(l) = ατ ′

IASTORE2-A
code(pc) = iastore ω = v ::i ::α̂τ ::ω′

σ ⇒A (g,pc, ξ,ω,h[l �→ ατ ′], φ ∪ {τ ′ <: τ,0 ≤ α(LEN)})[l/α̂]
where l /∈ domh,ατ ′ = new-sarr(symbols(σ))

IALOAD1-A
code(pc) = iaload ω = i ::α̂τ ::ω′

σ ⇒A (g,pc, ξ,ω,h,φ ∪ {τ ′ <: τ }) where l ∈ collect(h),h(l) = ατ ′

IALOAD2-A
code(pc) = iaload ω = i ::α̂τ ::ω′

σ ⇒A (g,pc, ξ,ω,h[l �→ ατ ′], φ ∪ {τ ′ <: τ,0 ≤ α(LEN)})[l/α̂]
where l /∈ domh,ατ ′ = new-sarr(symbols(σ))

Fig. 23 Additional rules for object creation and manipulation instructions in SELA

Control transfer instruction rules (shown in Fig. 22) There are seven additional
SELA semantic rules for the if_acmpeq instruction. Rule IF_ACMPEQ1-A is to
optimize the operation when the two operands are the same symbolic location; there
is no need to resolve the symbolic location in this case. The remaining six rules
resolve symbolic location operands. Rules IF_ACMPEQ2-A, IF_ACMPEQ3-A, and
IF_ACMPEQ4-A handle the case of the first operand being a symbolic location.
More specifically, rule IF_ACMPEQ2-A resolves a symbolic location to a location
that refers to an existing object in the heap; rule IF_ACMPEQ3-A resolves a sym-
bolic location associated with a record type to a fresh location, which refers to a
fresh object; rule IF_ACMEQ4-A resolves a symbolic location associated with an
array type to a fresh location, which refers to a fresh array. Symmetrically, rules
IF_ACMPEQ5-A, IF_ACMPEQ6-A, and IF_ACMPEQ7-A handle the case of the sec-

290 Autom Softw Eng (2012) 19:233–301

ond operand being a symbolic location. If both operands are locations or NULL, SEL
rule IF_ACMPEQ1-S or IF_ACMPEQ2-S is applied.

There is one additional rule for each of the ifnull and ifnonnull instructions
to handle the case of a symbolic location operand. Since a symbolic location can only
be resolved to a location which is not NULL, there is no need for the instructions to
resolve the symbolic location operand. This is another advantage of lazier initial-
ization besides being lazier than lazy initialization: symbolic locations are directly
leveraged.

For if_icmplt, since all the operands are integer values and thus can not
be symbolic locations, the rule for the instruction is the same as the one in SEL,
IF_ICMPLT-S.

Object creation and manipulation instruction rules (shown in Fig. 23) There are
three additional rules for the getfield and two for putfield instructions. Most
of those rules are for resolving a symbolic location to a location that refers to one
of existing objects in the heap (GETFIELD1-A, PUTFIELD1-A) or a fresh sym-
bolic object (GETFIELD2-A, PUTFIELD2-A). The remaining rule of getfield,
GETFIELD3-A, demonstrates the essence of lazier initialization: when a field is
not defined, a symbolic location is produced, that is, the field is initialized with a
fresh symbolic location. Note that the field can be initialized with NULL as well
(shown in rule GETFIELD3-S). Therefore, GETFIELD3-A rule overrides SEL rules
that initialize an undefined field to a location, i.e., GETFIELD4,5,6-S. In other
words, the SELA rules for instruction getfield consist of GETFIELD1,2,3-A and
GETFIELD1,2,3,7-S.

For the putfield instruction, the two additional rules PUTFIELD1-A and
PUTFIELD2-A resolve the second operand if it is a symbolic location. Whether the
top of the stack is a symbolic location is not examined because the top value is only
transferred by the instruction.

For iastore and iaload, there are two additional rules for each instruction: to
resolve a symbolic location to an existing array in the heap or a fresh array.

The rest of the instructions (anew, anewarray, instanceof, and
checkcast) in this category have the same rules as the ones in SEL because no
symbolic location can appear in the operands.

Appendix D: Lazier# semantic rules

SELB (Symbolic Execution with Lazier# Initialization) is distinguished from SELA
in the use of symbolic references. Hence, in general, the semantic rules of SELB
are the same as those of SELA unless symbolic references are involved. Symbolic
references can be used as operands of instructions or produced by the instruction,
getfield. Depending on the instruction, symbolic references that appear in the
operands may be either be consumed or transferred. For each symbolic reference
that is consumed by instructions, the symbolic reference is resolved to either NULL

or a fresh symbolic location. Once symbolic references are resolved, the rules of
SELA and SEL are applied. Similar to SELA, we only discuss additional rules that

Autom Softw Eng (2012) 19:233–301 291

IF_ACMPEQ1-B
code(pc) = if_acmpeq pc′ ω = ᾱτ ::ᾱτ ::ω′

σ ⇒B (g,pc′, ξ,ω′, h,φ)

IF_ACMPEQ2-B
code(pc) = if_acmpeq pc′ ω = ᾱτ ::v ::ω′

σ ⇒B σ [NULL/ᾱ]

IF_ACMPEQ3-B
code(pc) = if_acmpeq pc′ ω = ᾱτ ::v ::ω′

σ ⇒B σ [α̂τ /ᾱτ] where α̂ is fresh

IF_ACMPEQ4-B
code(pc) = if_acmpeq pc′ ω = v ::ᾱτ ::ω′

σ ⇒B σ [NULL/ᾱ]

IF_ACMPEQ5-B
code(pc) = if_acmpeq pc′ ω = v ::ᾱτ ::ω′

σ ⇒B σ [α̂τ /ᾱτ] where α̂ is fresh

Fig. 24 Additional rules for if_acmpeq instruction in SELB

handle symbolic references for instructions: if_acmpeq, ifnull, ifnonnull,
getfield, putfield, iastore, and iaload since the rest of the instructions
that we cover in this article have the same rules as in SEL. We will use binding
σ = (g,pc, ξ,ω,h,φ).

Figure 24 shows the five additional rules for the if_acmpeq instruction. Simi-
lar to rule IF_ACMPEQ1-A in SELA, rule IF_ACMPEQ1-B is an optimization for
the two operands being the same symbolic reference without having to resolve the
symbolic reference. Each of the remaining four rules resolves a symbolic reference
operand to either NULL as in IF_ACMPEQ2-B and IF_ACMPEQ4-B, or a fresh sym-
bolic location as in IF_ACMPEQ3-B and IF_ACMPEQ5-B.

Figure 25 shows two additional rules for each of the ifnull and ifnonnull in-
structions. The additional rules are for resolving symbolic references to either NULL

or a fresh symbolic location.
Figure 26 shows the additional rules for the getfield instruction.

GETFIELD1-B and GETFIELD2-B are added to resolve symbolic references. Rule
GETFIELD3-B initializes an undefined field with a fresh symbolic reference. This
SELB rule, GETFIELD3-B, overrides SELA rule GETFIELD3-A and SEL rules
GETFIELD3,4,5,6-S. In summary, SELB rules for instruction getfield consist
of GETFIELD1,2,3-B; GETFIELD1,2-A; and GETFIELD1,2,7-S. Notice that rule
GETFIELD3-S, which initializes a field with NULL, is also overridden whereas this
rule is not overridden by rule GETFIELD3-A in SELA. This difference explains why
SELB is even lazier than SELA: in SELA whether a field value is NULL is decided
when it is initialized by the getfield instruction; in SELB, this decision is de-
ferred.

The additional rules for putfield, iastore, and iaload instructions are just
to resolve the symbolic reference operand and are the same as GETFIELD1-B and
GETFIELD2-B; thus the rules are not listed.

292 Autom Softw Eng (2012) 19:233–301

IFNULL1-B
code(pc) = ifnull pc′ ω = ᾱτ ::ω′

σ ⇒B σ [NULL/ᾱ]

IFNULL2-B
code(pc) = ifnull pc′ ω = ᾱτ ::ω′

σ ⇒B σ [α̂τ /ᾱτ] where α̂ is fresh

IFNONNULL1-B
code(pc) = ifnonnull pc′ ω = ᾱτ ::ω′

σ ⇒B σ [NULL/ᾱ]

IFNONNULL2-B
code(pc) = ifnonnull pc′ ω = ᾱτ ::ω′

σ ⇒B σ [α̂τ /ᾱτ] where α̂ is fresh

Fig. 25 Additional rules for ifnull and ifnonnull instructions in SELB

GETFIELD1-B
code(pc) = getfield f ω = ᾱτ ::ω′

σ ⇒B σ [NULL/ᾱ]

GETFIELD2-B
code(pc) = getfield f ω = ᾱτ ::ω′

σ ⇒B σ [α̂τ /ᾱτ] where α̂ is fresh

GETFIELD3-B
code(pc) = getfield fτ ω = l ::ω′ h(l)(fτ)↑ τ ∈ NPType

σ ⇒B (g,next(pc), ξ, ᾱτ ::ω′, h[l �→ h(l)[fτ �→ ᾱτ]], φ)

where ᾱ is fresh

Fig. 26 Additional rules for getfield instruction in SELB

Appendix E: Concretization (γ) functions

E.1 Substitution operator

To facilitate the definition of γ functions, we define a substitution operator, η∗(C)

where η is a function, η : Value ∪ Type ⇀ Value ∪ Type, and C is a construct which
can be a value, an expression, a tuple, a function, a set, or a sequence. The inductive
definition of C is

C ::= c | fn : C → C | nil | c ::C | C op C | (C,C, . . . ,C) | {C,C, . . . ,C},

where c ∈ Value ∪ Type ∪ PC and op ∈ {+,−,∗, /,=, �=,<,≤,>,≥, :>,∨}. The
result of η∗(C) has the same structure as C except that any component vt that is in

Autom Softw Eng (2012) 19:233–301 293

List 3 Environments
• SEnv = {ES | ES : PSymbol → Const } is the set of all primitive symbol environ-

ments.
• TEnv = {ET | ET : SymType → (AType 	 RType) } is the set of all type environ-

ments.
• Sym(Loc) is the permutation group of Loc, that is, the set of bijective functions

from Loc to Loc. Note that Sym means symmetric group here not to be confused
with symbolic locations.

• LEnv = {EL | EL : SymLoc → Loc } is the set of all symbolic location environ-
ments.

• REnv = {ER | ER : SymRef → (SymLoc ∪ {NULL}) } is the set of all symbolic
reference environments.

the domain of η is replaced by η(vt). Formally,

η∗(C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C if C ∈ Value ∪ Type ∪ PC ∧ C /∈ domη;
η(C) if C ∈ Value ∪ Type ∧ C ∈ domη;⋃

d∈domC{d �→ η∗(C(d))} if C is a function;
nil if C is the empty sequence (nil);
η∗(d)::η∗(q) if C is a sequence and C = d ::q;
η∗(C1) op η∗(C2) if C = C1 op C2;
(η∗(e1), η∗(e2), . . . , η∗(en)) if C = (e1, e2, . . . , en) for some n ∈ N;⋃

e∈C{η∗(e)} if C is a set.

List 3 shows a list of environments that are used in the definition of the γ functions.
Note that from this now on, we use subscripts c, s, a, and b to denote concrete, SEL,
SELA, and SELB state components and domains, respectively.

E.2 Function γs

We introduce the following semantic functions:

Vs : Values → ((SEnv × Sym(Loc)) → Valuec);
Os : NPSymbol → ((TEnv × SEnv × Sym(Loc)) → P (NPSymbol));
Hs : Heaps → ((TEnv × SEnv × Sym(Loc)) → P (Heapc));
Ss : States → ((TEnv × SEnv × Sym(Loc)) → P (Statec)).

The definitions are listed as follows:

– the Vs function:

Vs �v�(ES,ρ) = ρ∗(ES∗(v)).

294 Autom Softw Eng (2012) 19:233–301

– the Os function: Os �ατ �(ET ,ES,ρ) consists of all α′
τ ′ such that

1. τ ′ = ET ∗(τ).
2. if τ ′ ∈ RType, then

∀f ∈ Field α(f)↓ ∧f �= CONC ⇒ α′(f) = Vs �α(f)�(ES,ρ).

3. if τ ′ ∈ AType, then
(a) the length field of α′ is consistent with the length of α. Formally,

α′(LEN) = Vs �α(LEN)�(ES,ρ).

(b) all the initialized indexes of α should appear in α′. Formally,

∀i ∈ acc-idx(α) α′(Vs �i�(ES,ρ)) = Vs �α(i)�(ES,ρ).

(c) If α is a concrete array, then all the uninitialized indexes should be set to
the default value. Formally, if α(CONC) is defined, then for all m satisfying
0 ≤ m < α′(LEN),

m �∈ {
Vs �i�(ES,ρ) | i ∈ acc-idx(α)

} ⇒ α′(m) = α(DEF).

– the Hs function: Hs �hs �(ET ,ES,ρ) consists of all hc such that

1. each entry in hs has to appear in hc, formally,

∀(l, α) ∈ hs ∃β ∈ Os �α�(ET ,ES,ρ) (ρ(l), β) ∈ hc.

2. hc is type correct, that is, for each nonprimitive symbol in hc , all its fields are
mapped to values of compatible types. More specifically, each primitive field is
mapped to a constant of its type; each reference type field is mapped to either
NULL or a location in hc which maps to a nonprimitive symbol of a compatible
type.

3. for each entry (l, αc) in hc, αc is well-formed, formally,
(a) if (l, αc) is mapped from (l′, αs) in hs (l = ρ(l′) and αc ∈

Os �αs �(ET ,ES,ρ)), and if any field f of αs is undefined and nonprim-
itive, αc(f) has to be one of the following values:
– NULL.
– l1 where l1 �∈ ρ(domhs).10

– l2 where l2 ∈ ρ(domhs) and hs(ρ
−1(l2))(CONC) ↑.

(b) if (l, αc) is not mapped from any entry in hs (l �∈ ρ(domhs)), all the non-
primitive fields of αc can only be one of the three values listed in (a).

– the Ss function:

10We adopt a shorthand notation f (D′) to represent a function whose domain is restricted to D′ that is
supposed to be a subset of the domain of f . Formally, if f : D → D and D′ ⊆ D then f (D′) = {f (d) |
d ∈ D′ }. For example, ρ(domhs) = {ρ(l′′) | l′′ ∈ domhs }

Autom Softw Eng (2012) 19:233–301 295

Ss �(g,pc, ξ,ω,h,φ)�(ET ,ES,ρ)

= {(ρ∗(ES∗(g)),pc, ρ∗(ES∗(ξ)), ρ∗(ES∗(ω)),h′, TRUE)

| h′ ∈ Hs �h�(ET ,ES,ρ)}.

Finally, making use of the above semantic functions, we define γs as follows:

γs(σs) =
⋃

ES,ET ,ρ:
ES,ET �φ

Ss �σs �(ET ,ES,ρ).

Note that φ is the path condition of the state σs .

Property 1 For all σs ∈ States , if the path condition φs of σs is satisfiable, then
γs(σs) �= ∅.

Proof Since φs is satisfiable, there exist ET ∈ TEnv and ES ∈ SEnv that satisfy φs .
Then we can construct a state σc ∈ Statec by applying ET , ES , the identity permuta-
tion ρ to σs and letting each undefined field/index in σs to be the default value of the
type of the field/index. Clearly σc ∈ γs(σs), and γs(σs) �= ∅. �

E.3 Function γa

We define some semantic functions:

Ha : (Heapa ×) → (P (Symbol) × P (SymLoc) × LEnv) ⇀ (Heaps ×))

Sa : Statea → LEnv ⇀ P (States).

The definitions are listed as follows.

– the Ha function: Ha �(ha,φ)�(S, Ŝ,EL) = (hs,φ
′) for some hs ∈ Heaps and

φ′ ∈ 	 if the conditions in (3) hold; otherwise, the function is not defined. The
hs , φ′, and the conditions are defined as follows:

1. ha is well mapped to hs . More specifically,
(a) the domain of ha is mapped correctly,

domhs = domha ∪ EL(Ŝ).

(b) each entry in ha is mapped to hs . Formally,

∀l ∈ domha hs(l) = EL∗(ha(l)).

(c) for each nonprimitive symbol in hs that is not mapped from ha , it must be
a newly created symbol. Formally,

∀l ∈ (domhs − domha) hs(l) = ατ ,

296 Autom Softw Eng (2012) 19:233–301

where

ατ =
{

new-sarr(S ∪ hs(domhs − {l})), if E−1
L (l) is of array type

new-sym(S ∪ hs(domhs − {l})), otherwise.

2. φ′ is the smallest set of predicates that satisfies the following conditions:
(a) φ ⊆ φ′.
(b) each symbolic location is mapped to a location that refers to an object of a

compatible type. Formally,

∀α̂τ ∈ Ŝ (τ ′ <: τ) ∈ φ′, where hs(EL(α̂)) = ατ ′ .

(c) for each array in hs , φ′ contains the constraint asserting that the length of
the array ≥ 0.

∀α̂τ ∈ Ŝ ∧ τ ∈ AType (EL(α̂)(LEN) ≥ 0) ∈ φ′.

3. The function is defined if the following conditions hold:
(a) each symbolic location is not mapped to a location that refers to a concrete

nonprimitive symbol. Formally,

∀α̂ ∈ Ŝ
(
ha(EL(α̂)) ↑ ∨ha(EL(α̂))(CONC) ↑)

.

(b) φ′ is satisfiable.
(c) all symbols in ha and φ are in S.
(d) all symbolic locations in ha are in Ŝ.

– the Sa function (we use binding σa = (g,pc, ξ,ω,h,φ)): Sa �σa �(EL) is not de-
fined if
Ha �(h,φ)�(symbols(σa), sym-locs(σa),EL) is not defined; otherwise,

Sa �σa �(EL) = (EL∗(g),pc,EL∗(ξ),EL∗(ω),h′, φ′),

where (h′, φ′) = Ha �(h,φ)�(symbols(σa), sym-locs(σa),EL).

Finally,

γa(σa) = {
Sa �σa �(EL) | EL ∈ LEnv ∧ Sa �σa �(EL) is defined

}
.

Property 2 For all σa ∈ Statea , if the path condition φa of σa is satisfiable, then
γa(σa) �= ∅.

Proof Define an injective EL ∈ LEnv which maps each symbolic location in
sym-locs(σa) to a fresh location. Since φa is satisfiable, Sa �σa �(EL) is defined.
Therefore, Sa �σa �(EL) ∈ γa(σa). �

Autom Softw Eng (2012) 19:233–301 297

E.4 Function γb

γb(σb) =
{∅ if the path condition of σb is FALSE;

{ER∗(σb) | ER ∈ legal-env(σb) } otherwise,

where legal-env(σb) consists of all ER ∈ REnv such that

1. ER does not map any symbolic references to symbolic locations that appear in the
state. Formally,

∀ᾱ ∈ sym-refs(σb) ER(ᾱ) /∈ sym-locs(σb).

2. ER does not map two symbolic references to the same symbolic location. For-
mally,

∀ᾱ1, ᾱ2 ∈ sym-refs(σb) ᾱ1 �= ᾱ2 ∧ ER(ᾱ1) = ER(ᾱ2) ⇒ ER(ᾱ1) = NULL.

Property 3 For all σb ∈ Stateb , if the path condition φb of σb is satisfiable, then
γb(σb) �= ∅.

Proof Since φb is satisfiable, then γb(σb) = {ER∗(σb) | ER ∈ legal-env(σb) }. Define
a ER ∈ REnv which maps each symbolic reference in sym-refs(σb) to NULL. Clearly,
ER∗(σb) ∈ γb(σb). �

Appendix F: Kripke structure

Definition 1 (Kripke structure (Schmidt 2000)) K = (K, IK,−→K,LK), where

• K is a set of states;
• IK is a set of initial states and a subset of K ;
• −→K⊆ K ×K is the transition relation; we often call a sequence of transitions

a trace.
• LK : K → P (Atom) associates a set of atomic properties, LK(s) ⊆ Atom, to all

σ in K .

We use unlabeled Kripke structures in the main text where LK is omitted.

Definition 2 (Simulation of Kripke structures �R (Schmidt 2000)) Given

K1 = (1, I1,−→1,L1) and K2 = (2, I2,−→2,L2),

K1 �R K2 (we read it as “K1 is simulated by K2”) for R ∈ 1 × 2 if and only if

∀σ1 ∈ 1, σ2 ∈ 2 (σ1, σ2) ∈ R ∧ σ1 −→1 σ ′
1

⇒ ∃σ ′
2 ∈ 2 σ2 −→2 σ ′

2 ∧ (σ ′
1, σ

′
2) ∈ R.

298 Autom Softw Eng (2012) 19:233–301

The above simulation relation essentially states that if two states are related by a
certain relation, the end states obtained by applying their own transitions are related
by the same relation as well.

Definition 3 (Power Kripke structure (Schmidt 2000)) Given any Kripke structure,
K = (K, IK , −→K,LK), the power Kripke structure of K is

P (K) = (P (K), P (IK),
•−→K,LP (K)),

satisfying the following condition: for two sets of states S,S′ ⊆ K , S
•−→K S′ only

if ∀σ ′ ∈ S′.∃σ ∈ S.σ −→K σ ′.

We also use unlabeled power Kripke structures in the main text where LP (K) is
omitted.

Appendix G: Proof of Lemma 1

Proof We prove part (1) by showing

IC ⊆
⋃

σs∈IS

γs(σs) and IC ⊇
⋃

σs∈IS

γs(σs).

⊆ direction: It is sufficient to show that for all σc ∈ IC there exists a state σs ∈ IS
such that σc ∈ γs(σs). Suppose that σc = (gc,pcinit, ξc,∅, hc, TRUE) is in IC . We first
construct a state σs = (gs,pcs , ξs,ωs, hs,φ), and a primitive symbol environment ES

and a type environment ET to facilitate the proof of σc ∈ γs(σs) as follows.

1. Globals gs are almost the same as gc except that each primitive global, f , is re-
placed by a fresh primitive symbol. In addition, we add to ES the mapping from
gs(f) to gc(f).

2. pcs = pcinit.
3. Locals ξs are treated the same as the globals.
4. ωs = ∅.
5. The heap hs contains only the mapping from locations that appear in ξc and gc.

Furthermore, for each location l in the domain of hs , hs(l) is mapped to a fresh
nonprimitive symbol with a fresh symbolic type. Let α′

τ ′ = hs(l) and ατ = hc(l).
If τ is in RType, then all fields in α′ are undefined; if the type is in AType, then
only the LEN field of α′ is defined as a fresh primitive symbol, and its indexes are
undefined. In addition, we add to ET the mapping from τ ′ to τ .

6. The path condition φ: if there is a reference from a global or a local of type τ to
a nonprimitive symbol α′

τ ′ in hs , we add τ ′ <: τ to φ; if this global or local is of
array type (τ ∈ AType), then we also add to φ a constraint α′

τ ′(LEN) ≥ 0.

It is clear that σs ∈ IS . In addition, if we apply Ss to σs , aforementioned two envi-
ronments ES and ET , and the identity permutation ρ, then get

σc ∈ Ss �σs �(ES,ET ,ρ).

Autom Softw Eng (2012) 19:233–301 299

Since γs(σs) = ⋃
ES,ET ,ρ:
ES,ET �φ

Ss �σs �(ET ,ES,ρ), we can conclude that σc ∈ γs(σs).

⊇ direction: From the definition of initial states introduced in Sect. 4.1 and the
definition of γs , it is easy to deduce that for all σs ∈ IS , γs(σs) ⊆ IC . Therefore, we
can conclude that IC ⊇ ⋃

σs∈IS γs(σs).
The proofs of part (2) and (3) can be done similarly. �

References

Alves-Foss, J. (ed.): Formal Syntax and Semantics of Java. Lecture Notes in Computer Science, vol. 1523.
Springer, Berlin (1999)

Anand, S., Pasareanu, C.S., Visser, W.: Symbolic execution with abstract subsumption checking. In: Val-
mari, A. (ed.) Model Checking Software, Proceedings of 13th International SPIN Workshop, Vienna,
Austria, March 30–April 1, 2006. Lecture Notes in Computer Science, vol. 3925. Springer, Berlin
(2006)

Anand, S., Orso, A., Harrold, M.J.: Type-dependency analysis and program transformation for symbolic
execution. In: Tools and Algorithms for Construction and Analysis of Systems (TACAS) (2007)

Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) Proceedings of Computer Aided Ver-
ification, 19th International Conference, CAV 2007. Lecture Notes in Computer Science, vol. 4590,
pp. 298–302. Springer, Berlin (2007)

Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic assertion checking with separa-
tion logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.) Formal Methods for
Components and Objects, 4th International Symposium, FMCO 2005, Amsterdam, The Netherlands,
November 1–4, 2005. Lecture Notes in Computer Science, vol. 4111, pp. 115–137. Springer, Berlin
(2005)

Bertelsen, P.: Dynamic semantics of java bytecode. Future Gener. Comput. Syst. 16, 841–850 (2000)
Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In: Proceedings of

the 5th International Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS’99). LNCS, vol. 1579, pp. 193–207. Springer, Berlin (1999)

Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Adv. Comput. 58,
117–148 (2003)

Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on Java predicates. In: Proceed-
ings of the International Symposium on Software Testing and Analysis (ISSTA), pp. 123–133. ACM,
New York (2002)

Brat, G., Havelund, K., Park, S., Visser, W.: Java PathFinder—a second generation of a Java model-
checker. In: Proceedings of the Workshop on Advances in Verification (2000)

Chase, D.R., Wegman, M., Zadeck, F.K.: Analysis of pointers and structures. In: Proceedings of the Con-
ference on Programming Language Design and Implementation (PLDI’90), pp. 296–310 (1990)

Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)
Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Proceedings of Tools and

Algorithms for the Construction and Analysis of Systems (TACAS’04). LNCS, vol. 2988, pp. 168–
176. Springer, Berlin (2004)

Cook, S.A.: Soundness and completeness of an axiom system for program verification. SIAM J. Comput.
7(1), 70–90 (1978)

Darga, P.T., Boyapati, C.: Efficient software model checking of data structure properties. In: Proceedings of
the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications, OOPSLA ’06, pp. 363–382. ACM, New York (2006)

de Moura, L.M., Bjørner, N.: Z3: an efficient smt solver. In: Tools and Algorithms for the Construction
and Analysis of Systems, TACAS08. Lecture Notes in Computer Science, vol. 4963, pp. 337–340.
Springer, Berlin (2008)

Deng, X.: Contract-based verification and test case generation for open systems. PhD thesis, Kansas State
University (2007)

Deng, X., Lee, J., Robby: Bogor/Kiasan: a k-bounded symbolic execution for checking strong heap prop-
erties of open systems. In: 21st IEEE/ACM International Conference on Automated Software Engi-
neering (ASE06), pp. 157–166. IEEE Comput. Soc., Los Alamitos (2006)

300 Autom Softw Eng (2012) 19:233–301

Deng, X., Robby, Hatcliff, J.: Kiasan/KUnit: automatic test case generation and analysis feedback for open
object-oriented systems. In: Testing: Academic and Industrial Conference—Practice and Research
Techniques (TAIC-PART07) (2007a)

Deng, X., Robby, Hatcliff, J.: Towards a case-optimal symbolic execution algorithm for analyzing strong
properties of object-oriented programs. In: Proceedings of the 5th IEEE International Conference
on Software Engineering and Formal Methods (SEFM), pp. 273–282. IEEE Comput. Soc., London
(2007b)

Deng, X., Walker, R., Robby: Case counting analysis for path-sensitive bounded verification techniques
on standard data structure operations. Tech. Rep. SAnToS-TR2010-01-19, Kansas State University
(2010)

Deutsch, A.: Interprocedural may-alias analysis for pointers: beyond k-limiting. In: Proceedings of the
Conference on Programming Language Design and Implementation (PLDI’94), pp. 230–241 (1994)

Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java. In: OOPSLA ’08: Proceedings
of the 23rd ACM SIGPLAN Conference on Object-Oriented Programming Systems Languages and
Applications, pp. 213–226. ACM, New York (2008)

Drossopoulou, S., Eisenbach, S.: Towards an operational semantics and proof of type soundness for Java.
In: Formal Syntax and Semantics of Java. Springer, Berlin (1998)

Dutertre, B., de Moura, L.: The Yices SMT solver (2006). Tool paper at http://yices.csl.sri.com/
tool-paper.pdf

Geilen, M.: On the construction of monitors for temporal logic properties. Electr. Notes Theor. Comput.
Sci. 55(2) (2001)

Gligoric, M., Gvero, T., Jagannath, V., Khurshid, S., Kuncak, V., Marinov, D.: Test generation through
programming in udita. In: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering, ICSE ’10, vol. 1, pp. 225–234. ACM, New York (2010)

Grieskamp, W., Tillmann, N., Schulte, W.: XRT—exploring runtime for .NET—architecture and applica-
tions. In: Workshop on Software Model Checking (SoftMC05) (2005)

Hantler, S.L., King, J.C.: An introduction to proving the correctness of programs. ACM Comput. Surv.
8(3), 331–353 (1976)

Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 1st edn.
Addison-Wesley, Reading (1979)

Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng. Methodol. 11(2),
256–290 (2002)

Jones, N.D., Muchnick, S.S.: Flow analysis and optimization of LISP-like structures. In: Proceedings of
the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL’79),
pp. 244–256. ACM, New York (1979)

Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized symbolic execution for model checking and test-
ing. In: Garavel, H., Hatcliff, J. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, Proceedings of 9th International Conference, TACAS 2003, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7–11,
2003. Lecture Notes in Computer Science, vol. 2619, pp. 553–568. Springer, Berlin (2003)

King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)
Larus, J.R., Hilfinger, P.N.: Detecting conflicts between structure accesses. In: Proceedings of the Confer-

ence on Programming Language Design and Implementation (PLDI’88), pp. 24–31 (1988)
Leavens, G.T., Baker, A.L., Ruby, C.: JML: a Java modeling language. In: Formal Underpinnings of Java

Workshop (at OOPSLA’98). ACM, New York (1998)
Lev-Ami, T., Sagiv, M.: TVLA: a framework for Kleene-based static analysis. In: Proceedings of the

7th International Static Analysis Symposium (SAS). Lecture Notes in Computer Science, vol. 1694,
pp. 280–301. Springer, Berlin (2000)

Lindholm, T., Yellin, F.: The Java Virtual Machine Specification (2nd edn.) (1999). http://java.sun.com/
docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html

Marinov, D., Khurshid, S.: TestEra: a novel framework for automated testing of Java programs. In: 16th
IEEE Conference on Automated Software Engineering (ASE 2001), p. 22. IEEE Comput. Soc., Los
Alamitos (2001)

McCarthy, J.: Towards a mathematical science of computation. Inf. Process. 62, 21–28 (1962)
Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT

solver. In: Proceedings of the 38th Conference on Design Automation, pp. 530–535. ACM, New
York (2001)

MS: Common language infrastructure (CLI). Standard ECMA-335 (2006)

http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html

Autom Softw Eng (2012) 19:233–301 301

Păsăreanu, C.S., Visser, W.: Verification of Java programs using symbolic execution and invariant genera-
tion. In: SPIN Workshop, pp. 164–181 (2004)

Ramalingam, G.: The undecidability of aliasing. ACM Trans. Program. Lang. Syst. 16(5), 1467–1471
(1994)

Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: 17th IEEE Symposium on
Logic in Computer Science (LICS 2002), pp. 55–74. IEEE Comput. Soc., Los Alamitos (2002)

Robby: Sireum: a software analysis platform. http://sireum.org (2008)
Robby, Dwyer, M.B., Hatcliff, J.: Bogor: an extensible and highly-modular model checking framework.

In: Proceedings of the 9th European Software Engineering Conference Held Jointly with the 11th
ACM SIGSOFT Symposium on the Foundations of Software Engineering, pp. 267–276. ACM, New
York (2003)

Roberson, M., Boyapati, C.: Efficient modular glass box software model checking. In: Proceedings of the
ACM International Conference on Object Oriented Programming Systems Languages and Applica-
tions, OOPSLA ’10, pp. 4–21. ACM, New York (2010)

Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans. Program.
Lang. Syst. 24(3), 217–298 (2002). A preliminary version appeared in POPL 1999, pp. 105–118

Schmidt, D.: Binary relations for abstraction and refinement. Tech. rep., Kansas State University (2000)
Sen, K., Agha, G.: CUTE: a concolic unit testing engine for C. In: Wermelinger, M., Gall, H. (eds.) ACM

SIGSOFT Symposium on the Foundations of Software Engineering (FSE), pp. 263–272. ACM, New
York (2005)

Tillmann, N., de Halleux, J.: Pex–white box test generation for .NET. In: Beckert, B., Hähnle, R. (eds.)
Tests and Proofs, 2nd International Conference (TAP08). Lecture Notes in Computer Science,
vol. 4966, pp. 134–153. Springer, Berlin (2008)

Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation in Java Pathfinder. In: Avrunin, G.S.,
Rothermel, G. (eds.) Proceedings of the ACM/SIGSOFT International Symposium on Software Test-
ing and Analysis, ISSTA 2004, Boston, Massachusetts, USA, July 11–14, 2004, pp. 97–107. ACM,
New York (2004)

Weiss, MA: Data Structures and Algorithm Analysis in Java, 2nd edn. Addison-Wesley, Reading (2006)
Xie, Y., Aiken, A.: SATURN: a scalable framework for error detection using boolean satisfiability. ACM

Trans. Program. Lang. Syst. (TOPLAS) 29(3) (2007)
Zhang, H.: SATO: an efficient prepositional prover. In: Proceedings of the International Conference on

Automated Deduction. LNCS, vol. 1249, pp. 272–275. Springer, Berlin (1997)

http://sireum.org

	Efficient and formal generalized symbolic execution
	Abstract
	Introduction
	Organization

	Background
	Symbolic execution
	Role of decision procedures
	Termination
	Path explosion

	Lazy initialization algorithm
	Role of decision procedures
	Termination
	Path explosion

	Symbolic execution algorithms in Kiasan
	Kiasan's lazy initialization algorithm
	Handling arrays
	Initial states
	Roles of decision procedures

	Lazier initialization algorithm
	Initial states
	Example

	Lazier# initialization algorithm
	Initial states
	Example
	Optimality

	Bounding strategies in Kiasan
	Interprocedural and modular analysis in Kiasan

	Formalization
	Semantic domains
	Semantic rules
	Semantic rules for instruction getfield
	Semantic rules for array accessing instructions in SEL
	Semantic rules for other JVM instructions

	Relative soundness and completeness of symbolic execution rules
	Limitations of decision procedures
	Concretization (gamma) functions
	Soundness and completeness proof
	Soundness
	Completeness

	Experiments
	Experiment setup
	Kiasan implementations
	Experiment environment
	Examples and translation

	Comparison of the lazy, lazier, and lazier# initialization algorithms
	Benchmark experiment using n-bound

	Related work
	Symbolic execution
	Model checking
	Shape analysis
	Java formal semantics

	Conclusion and future work
	Acknowledgements
	Appendix A: Formalization of the swap example
	Bytecode execution of swap in JVM
	Formalization of states
	Formalization of initial states
	Formalization of a lazy trace
	Formalization of a lazier trace
	Formalization of a lazier# trace

	Appendix B: Concrete semantic rules
	Load and store instruction rules (shown in Fig. 16)
	Arithmetic instruction rules (shown in Fig. 17)
	Object creation and manipulation instruction rules
	Control transfer instruction rules (shown in Fig. 20)
	Rules for the assume and assert instructions (shown in Fig. 21)

	Appendix C: Lazier semantic rules
	Control transfer instruction rules (shown in Fig. 22)
	Object creation and manipulation instruction rules (shown in Fig. 23)

	Appendix D: Lazier# semantic rules
	Appendix E: Concretization (gamma) functions
	Substitution operator
	Function gammas
	Function gammaa
	Function gammab

	Appendix F: Kripke structure
	Appendix G: Proof of Lemma 1
	References

