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ABSTRACT
Despite the fact an intelligent tutoring system for programming

(ITSP) education has long a�racted interest, its widespread use has

been hindered by the di�culty of generating personalized feedback

automatically. Meanwhile, automated program repair (APR) is an

emerging new technology that automatically �xes so�ware bugs,

and it has been shown that APR can �x the bugs of large real-world

so�ware. In this paper, we study the feasibility of marrying intelli-

gent programming tutoring and APR. We perform our feasibility

study with four state-of-the-art APR tools (GenProg, AE, Angelix,

and Prophet), and 661 programs wri�en by the students taking

an introductory programming course. We found that when APR

tools are used out of the box, only about 30% of the programs in

our dataset are repaired. �is low repair rate is largely due to the

student programs o�en being signi�cantly incorrect — in contrast,

professional so�ware for which APR was successfully applied typ-

ically fails only a small portion of tests. To bridge this gap, we

adopt in APR a new repair policy akin to the hint generation policy

employed in the existing ITSP. �is new repair policy admits par-

tial repairs that address part of failing tests, which results in 84%

improvement of repair rate. We also performed a user study with

more than 250 novice students and 35 graders, and identi�ed an

understudied problem; novice students do not seem to know how

to e�ectively make use of generated repairs as hints, unlike graders

who seem to gain bene�ts from repairs.

CCS CONCEPTS
•Applied computing→Computer-assisted instruction; •So�-
ware and its engineering →So�ware testing and debugging;

1 INTRODUCTION
Developing and using intelligent tutoring system for novice pro-

grammers has gained renewed a�ention recently [7, 9, 11, 12, 14,

34, 36, 37]. �e typical goal of an intelligent tutoring system for

programming (ITSP) is to �nd bugs in student programs and pro-

vide proper feedback for the students to help them correct their

programs. An ITSP can also be used to help human tutors deal

with many di�erent student programs e�ciently. While an ITSP

for novice programmers has already existed since at least early

80s [39], it has not been widely adopted in the education �eld. �e

main di�culty of building an e�ective ITSP is in the high degree

of variations of student programs, which makes it challenging to
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automatically generate personalized feedback, without requiring

additional help from the instructor. Despite this di�culty, with the

advent of Massive Open Online Course (MOOC) and increasing

interest in end-user programming, the need for an e�ective ITSP

has never been greater. With the technological advances made

during the last more than three decades since an early prototype

system Meno-II [39] was introduced, it may now be possible to

realize the widespread use of ITSP.

Automated program repair (APR) is an emerging new technology

that has recently been actively researched [8, 10, 16, 20, 21, 23, 24,

28, 31, 41, 44]. An APR system �xes so�ware bugs automatically,

only requiring a test suite that can drive repair process. Failing tests

in the test suite pass a�er repair, which manifests bug �x. APR was

originally developed to �x large size professionally developed so�-

ware, and an APR tool, Angelix, recently reported and automated

�x of the Heartbleed bug [24]. In this paper, we seek to study the

inter-play between automated program repair and ITSP.

Given that programs of novice students are much simpler than

professionally developed so�ware, applying APR to student pro-

grams may seem achievable. However, when we applied four state-

of-the-art APR tools, namely, GenProg [19], AE [41], Angelix [24],

and Prophet [21] to 661 programs wri�en by the students taking

an introductory programming course conducted by one of the au-

thors, repairs are generated only for 31% of these programs. �e

remaining about 70% of the student programs in our dataset are

not repaired by any of the four tools.

One of the main reasons for a low repair rate is that student

programs are o�en severely incorrect, and fail the majority of the

tests. In our dataset, 60% of the programs fail more than half of

the available tests. �is is in contrast to the fact that professional

so�ware for which APR was successfully applied typically fails

only a small portion of tests. To rectify an incorrect program that

fails the majority of tests, it is o�en necessary to make sizable

changes to the program. Indeed, about half of the programs in our

dataset require more than one hunk of changes to reach the correct

programs (our dataset contains a corresponding correct program

for each incorrect program). However, the current APR tools can

�x only a small number of lines; most successful repairs reported in

the literature change a small number of lines, and some tools such

as SPR [20] and Prophet [21] even restrict the change to a single

line. Given these discrepancies, it seems infeasible to use APR tools

for the purpose of tutoring programming.

Di�erence betweenBug Fixing andProgramTutoring. While

we report in this paper APR tools’ weak capability to �x novice



student programs, showing a correct program to a student is not

necessarily the best way to provide students with feedback. In fact,

experienced human tutors show an answer only selectively when

students make simple errors such as syntactic errors [27]. For more

complex errors such as semantic errors, human tutors, in general,

do not directly correct the error; instead, they give students hints.

�at way, tutors can help students move toward a correct answer.

Partial Repairs as Hints. Considering this di�erence between

bug �xing and program tutoring, we explore the possibility of

using APR tools for the purpose of generating hints, for the sake

of teaching programming to students. When student programs

fail multiple tests, we change the repair policy of APR tools as

follows. Given an incorrect student program P , a repair candidate

P ′ is returned as a repair if (1) all previously passing tests still

pass with P ′, and (2) at least one of previously failing tests passes

with P ′. We call such as repair a partial repair, distinguishing it

from the complete repair that passes all tests following the original

repair policy of APR. By comparing a generated partial repair with

the incorrect program, students can see when a particular test

fails or passes, which can help a student understand why his or

her program fails the test addressed by the partial repair. Since a

generated partial repair R is specialized for the tests addressed by

R, the expected usage of partial repairs is to encourage students

to modify their own incorrect program by taking account of the

partial repair, rather than blindly accepting it.

We note that our partial repair is conceptually similar to the

“next-step hint” advocated in the education �eld [2, 6, 29, 32, 33,

35]. By looking at a next-step hint, students can make forward

progress toward an answer. In contrast, recent automated feedback

generation techniques appeared in the so�ware engineering and

programming languages �elds [14, 36, 37] are evaluated under a

restricted assumption that student programs are almost correct.

To facilitate the use of partial repairs as hints, our modi�ed re-

pair strategy generates one of the following two forms of repairs.

�e �rst kind of a partial repair is: if (E) { S }, where S is a modi-

�ed/added/deleted statement and E is the guard expression for S .

When such a form of a repair is generated, the student can obtain a

hint about a data-�ow change by observing the modi�cation/addi-

tion/deletion of S , along with an additional hint about when that

data-�ow change is necessary by observing the guard E. �e sec-

ond kind of a partial repair modi�es only conditional expressions,

which gives students a hint about control-�ow changes.

Improved Feedback Rate. A�er changing the repair policy (al-

lowing partial repairs) and the repair strategy, feedback rate (repair

generation rate) signi�cantly improves, showing 84% improvement.

In about 60% of the programs in our dataset, either complete or

partial repairs are generated. By analyzing the remaining cases

where repairs are not generated, we identify a few common reasons

for repair failure — the two most common reasons being the need

for output string modi�cation and array modi�cation for which

the current APR tools are not specialized. It would be most cost

e�ective to strengthen repair operators that can manipulate strings

and arrays in future APR tools.

User Study. A high feedback rate is only one necessary condition

for using APR for programming tutoring. To see whether auto-

matically generated repairs actually help students and graders, we

perform a user study with over two hundred students taking an

introductory C programming course and 35 teaching assistants

(TAs) of the same course, part of whose duty is to grade student

assignments. In our user study, students’ problem solving time

increases when generated repairs are provided as hints, whereas

TAs’ grading performance improves. �is di�erence seems to be

due to that repairs generated by APR tools over�t the provided

test-suite, which is the well-known problem in APR [38]. While

TAs can, in general, spot the problems of the incorrect student

program based on suggested repairs, novice students are likely to

be distracted by the overly specialized suggestions. To transform

automatically generated repairs into feedback that can actually

help students, post-processing of generated repairs seems neces-

sary, while answering the question about which form of feedback

is bene�cial for students remains a future challenge. Note that even

if the ideal correct repair for a given student program is available,

post-processing is still necessary to give the student a hint, not a

solution.

Our Contributions. Overall, we perform in this paper a feasibil-

ity study of using APR for introductory programming assignments.

We found that:

• �e current state-of-the-art APR tools more o�en than not fail

to generate a repair.

• However, they can, more o�en than not, generate partial repairs

that pass part of previously failing tests. Generating partial

repairs are analogous to that human tutors guide the students

gradually toward the answer by giving them hints.

• Failure of APR is o�en due to a few common reasons such as the

weak ability of APR tools to change the output string.

• Automatically generated repairs seem to help TAs grade student

programs more e�ciently.

• However, novice students do not seem to know how to e�ectively

make use of suggested repairs to correct their programs.

Overall, it seems feasible to use APR tools for the purpose of

tutoring introductory programming, given that repairs can be gen-

erated more o�en than not a�er tailoring APR tools, and further

improvement seems possible by addressing a few common reasons

for repair failure.

2 AUTOMATED PROGRAM REPAIR
We perform a feasibility study with the following four state-of-

the-art APR tools: GenProg [19], AE [41], Prophet [21], and An-

gelix [24]. �ese four tools, similar to the majority of APR tools,

are test-driven, meaning that a modi�ed program P ′ is considered

repaired if P ′ passes all tests in the provided test suite. GenProg

repeatedly modi�es the program using genetic programming [17]

until it �nds a repair or time budget is exhausted. In contrast to

GenProg where the program is modi�ed in a stochastic fashion (the

program is modi�ed di�erently at each run of the tool), AE modi�es

the program in a deterministic way (the program is modi�ed in the

same way at each run) by applying mutation operators to the pro-

gram. Prophet �rst searches for a transformation schema that can

be used to repair the program, and in the next step, it instantiates

the transformation schema to generate a repair. In the second step

of schema instantiation, Prophet uses a repair model learned from

successful human patches to prioritize the instantiation similar to
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Table 1: Characteristics of our dataset

Lab # Prog Topic

Lab 3 63 Simple Expressions, printf, scanf

Lab 4 117 Conditionals

Lab 5 82 Loops, Nested Loops

Lab 6 79 Integer Arrays

Lab 7 71 Character Arrays (Strings) and Functions

Lab 8 33 Multi-dimensional Arrays (Matrices)

Lab 9 48 Recursion

Lab 10 53 Pointers

Lab 11 55 Algorithms (sorting, permutations, puzzles)

Lab 12 60 Structures (User-De�ned data-types)

human patches. Angelix �rst searches for a set of angelic values

for potentially buggy expressions E; when these angelic values sub-

stitute E, all tests are passed. In the next step, Angelix synthesizes

patch expressions that return the angelic values found in the �rst

step. �ese aforedescribed four APR tools, while sharing the goal of

generating repairs that pass all tests, internally use di�erent repair

algorithms and repair operators. We include these di�erent APR

tools in our study to gain holistic understanding of the feasibility

of using APR tools for programming tutoring.

3 DATASET
�e dataset on which we perform and report our analysis was

obtained from an Introductory C Programming (CS-101) course

o�ered at the author’s institute. �is course was credited by 400+

�rst year undergraduate students. One of the major grading com-

ponent was weekly programming assignments (termed Lab). �e

assignments were designed around a speci�c topic every week, as

described in Table 1, so as to test the concepts learned so far. �e

labs were conducted in an environment where we recorded the

sequence of submissions made by students towards the goal of pass-

ing as many pre-de�ned test-cases as possible. Multiple a�empts

were allowed, with only the last submission being graded. For each

of these labs, we pick a random sample of (Pb , Pc ) program pairs as

our dataset, where Pb is a version of student program which fails

on one or more test-cases, and Pc is a later version of the a�empt

by the same student which passes all the provided test-cases. We

exclude the instances of Pb from our dataset if Pb fails to be com-

piled. �e second column of Table 1 shows the number of programs

for each lab we include in our dataset.

4 INITIAL FEASIBILITY STUDY
How o�en can the state-of-the-art APR tools �x incorrect student

programs? A high repair rate of APR is a prerequisite to using

APR tools for feedback generation. As the �rst step of our feasibil-

ity study, we investigate how well four state-of-the-art APR tools

(i.e., GenProg, AE, Prophet, and Angelix) �x the incorrect student

programs in our dataset. For each incorrect program, a repair is

considered found if one of the four APR tools successfully generates

a repair — that is, a generated repair passes all provided tests of the

program. We run the four APR tools in parallel until either (a) one

of the APR tools successfully generates a repair or (b) all APR tools

Table 2: �e result of our initial experiment in which the
existingAPR tools are used out of the box. �e overall repair
rate is 31%.

Lab # Programs # Fixed Repair Rate Time

Lab 3 63 3 5 % 6 s

Lab 4 117 30 26 % 20 s

Lab 5 82 27 33 % 89 s

Lab 6 79 32 41 % 50 s

Lab 7 71 17 24 % 75 s

Lab 8 33 16 48 % 139 s

Lab 9 48 15 31 % 46 s

Lab 10 53 24 45 % 24 s

Lab 11 55 26 47 % 83 s

Lab 12 60 18 30 % 38 s

Total 661 208 31 % 59 s

fail to generate a repair within a time limit (15 minutes). We use the

default con�guration of each APR tool with slight modi�cations

for Prophet to extend the search space of repair [22]. Our experi-

ment was performed on Intel Xeon E5-2660 2.60Ghz processor with

Ubuntu 14.04 64-bit operating system and 62GB of memory.

4.1 Results of Initial Experiment
Table 2 shows the results of our initial experiment. Each column rep-

resents (from le� to right) the lab for which the incorrect programs

were submi�ed (Lab), the number of incorrect programs submi�ed

to the lab (# Programs), the number of incorrect programs in the lab

that are �xed by the APR tools we apply (# Fixed), repair rate, i.e., (#

Fixed)/(# Programs) in percentage (Repair Rate), and average time

taken to successfully generate repairs (Time), respectively. In our

experiments, repairs are generated only in 31% of the programs in

our benchmark, and repair rate is below 50% across each individual

lab. Meanwhile, the average time taken when repairs are found is

about 1 minute. Our initial experimental result suggests that a low

repair rate is a severe concern.

4.2 Reasons for Low Repair Rate
Despite the fact that student programs are simpler than programs

wri�en by professional developers for which APR tools are de-

veloped, the state-of-the-art APR tools fail to generate repairs for

the majority of the incorrect program in our benchmark. Our re-

sult suggests that �xing short student programs is not easier than

�xing developer programs. What makes automatic �x of student

programs di�cult? Answering this question may help us adjust

APR to new challenge posed by student programs. We observe in

our dataset that the following two properties of student programs

are likely to make automatic �x of student programs di�cult: (1)

student programs o�en fail in majority of the tests, and (2) student

programs o�en require complex �xes. We describe them in more

detail in the following sections.

4.2.1 High test failure rate. Student programs are o�en signi�-

cantly incorrect, and fail the majority of the tests. In our dataset,

60% of the programs fail more than half of the available tests. �is

is in contrast to the fact that professional so�ware for which APR
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Figure 1: �is plot shows the repair rate of two di�erent
groups (Y axis) across each individual lab (X axis). �e “High
failure rate” group consists of the cases in which more than
half of the tests fail the given program, whereas the “Low
failure rate” group consists of the cases inwhich at least half
of tests pass the given program. Repair rate is signi�cantly
lower in the high failure rate group to which 60% of the pro-
grams in our dataset belong.

was successfully applied typically fails only a small portion of tests.

High test failure rate is likely to make automated program repair

di�cult. Figure 1 compares the repair rate between the following

two groups of our benchmark programs: the high test failure group

in which more than half of the tests fail the given program and the

low test failure group where at least half of tests pass the given

program. While about half (48%) of the programs of the low failure

rate group are successfully repaired, the repair rate of the high

failure rate group is only 20%.

4.2.2 Complex fixes. �e majority of bugs reported to be suc-

cessfully repaired by APR tools are cosmetically simple, mostly

restricted to one-line changes of the given buggy program. Still,

the promise of APR is that it can save developers from manual

search for a simple �x in large so�ware. To investigate the dis-

tribution between simple �xes (one-hunk changes) and complex

�xes (multiple-chunk changes) of our dataset, we compare each

incorrect program in our dataset with its correct version. Recall

that our dataset contains both an incorrect program and its correct

version wri�en by the same student. In our dataset, about half of

the incorrect programs (46%) are �xed by adding more than 1 hunk

of changes. For these programs requiring complex �xes, the repair

rate is shown to be 26%, lower than the repair rate for the rest of

the programs (36%).

5 TUTORING PROGRAMMING
Repair rate of the current APR tools for novice student programs is

prohibitively low, as revealed in our experiment (Section 4). Does

this imply that it is infeasible to use APR for intelligent program-

ming tutoring (IPT)? Or, given that APR was originally not de-

veloped for IPT, is it possible to tune up APR for the purpose of

IPT?

One big di�erence between �xing a bug and tutoring program-

ming is in the di�erent degrees of their interactiveness with the

users. Tutoring is a highly interactive process between a tutor and

a student. To complete a program, a student takes multiple steps

of actions, and at each step, the tutor provides feedback. �e tutor

o�ers a con�rmatory feedback if the student follows the right track

toward a correct solution. Meanwhile, if the student goes astray,

the tutor provides a hint for the student to get the student back

on track. In this highly interactive tutoring process, the tutor does

not simply show a correct program all at once. Instead, the tutor

provides for the student a series of feedback to help the student

stay on track toward a correct solution. �is behavior of human

programming tutors is recorded in detail in [27]. Intelligent tu-

toring systems expected to mimic human tutors should provide

interactive feedback for the students where each feedback should

help the students move to the next step toward a correct solution.

In contrast, the ideal of APR is to synthesize a correct bug �x at

once, without involving a long feedback loop with the developer.

Given this di�erence between bug �xing and programming tutor-

ing, we believe APR can be used for intelligent tutoring only a�er

it is tailored to the new needs of programming tutoring.

6 FROM BUG FIXING TOWARD TUTORING
Bug �xing and programming tutoring, while similar to each other,

have di�erent goals. For tutoring in which the goal is student’s

learning, providing progressive and iterative feedback is educa-

tionally important, whereas in the current research on APR, the

objective has been to minimize developer’s intervention by auto-

matically generating a bug patch. �e problem of APR and the

problem of IPT can be described di�erently as follows.

De�nition 6.1 (Automated Program Repair (APR)). Given a pro-

gram P and its speci�cation S , the following holds true initially,

re�ecting the fact that P is buggy: P 0 S . �e problem of APR is to

generate an alternative program P ′ that satis�es P ′ ` S .

De�nition 6.2 (Intelligent Programming Tutoring (IPT)). Given a

program P and its speci�cation S where P 0 S , the problem of IPT is

to generate a series of alternative programs, P ′
1
, P ′

2
, . . . , P ′k , P

′
k+1

, . . . ,

P ′n, P
′
n+1

that satis�es the following, through an iterative interaction

with the student.

(1) For all odd numbers k , P ′k is an automatically generated pro-

gram by the tutoring system, and P ′k+1
is a program constructed

by the student, using P ′k as a hint.

(2) ∀1 ≤ i ≤ n : P ′i � P ′i+1
, where P ′i � P ′j denotes that program P ′j

is closer to the speci�cation S than P ′i (one de�nition of � will

be described later).

(3) ∀1 ≤ i ≤ n : P ′i 0 S
(4) P ′n+1

` S

Notice that in IPT, the �nal correct version of the program (P ′n+1
)

is sought for through a series of feedback generation (represented by

P ′k for all odd numbers k ), interspersed with student programming

(represented by P ′k+1
for all odd numbers k).

We describe in the following how we tailor APR to IPT. In partic-

ular, we tailor test-driven APR, given that the majority of APR tools

use a test suite as the speci�cation for repair. In test-driven APR, a

test suite is used as the speci�cation of the program. �at is, given
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a test suite T and a buggy program P where P 0 T , test-driven APR

generates a repaired program P ′ satisfying P ′ ` T , which denotes

P ′ passes all tests in T .

6.1 Tailoring Repair Policy
In IPT described in Def. 6.2, the �nal version of the program is not

reached at once. Instead, a series of intermediate programs are

constructed through iterative interactions between the tutoring

system and the student. �ese intermediate programs P ′k , while

gradually approaching the �nal version satisfying speci�cation

S , do not satisfy S (P ′k 0 S ). Similarly, in the test-driven approach

where S is replaced with a test suiteT , intermediate programs P ′k do

not pass all tests inT (P ′k 0 T ), while they are gradually approaching

the �nal version that passes all tests.

In test-driven APR, the partial relation � used in Def. 6.2 can be

naturally de�ned as follows. We say P ′k � P ′k+1
if all tests passed in

P ′k also pass in P ′k+1
. Similar to test-driven development (TDD), the

progression of the student can be achieved by gradually passing

more tests. While the number of tests may not be a precise measure

of student progression, its practicality is high, given that tests are

widely used in evaluating student programs. Related but orthogonal

issues are how to construct an e�ective test suite for the purpose of

intelligent tutoring, and in which order each test should be satis�ed

by the program; for instance, givenm failing tests and an incomplete

program, which tests among them tests should be addressed �rst?

�ese orthogonal issues are not addressed in this initial feasibility

study.

To implement progressive program construction (P ′
1
� P ′

2
�

. . . � P ′n ), we modify the repair policy of APR as follows. Taking

as input a student program P ′k , we generate P ′k+1
that satis�es P ′k ≺

P ′k+1
. Note that it is not required for P ′k+1

to pass all tests, unlike in

the original APR. �is di�erent repair policy can be implemented

in an APR tool in a straightforward way by generating a partial

repair de�ned as follows.

De�nition 6.3 (Partial Repair). Givenn positive tests, wheren ≥ 0,

andm negative tests, wherem > 0, a partial repair P ′ satis�es the

following:

(1) P ′ passes all n positive tests, and

(2) P ′ passes at least one ofm negative tests.

In comparison, we de�ne a complete repair generated in the

original APR as follows.

De�nition 6.4 (Complete Repair). Given n positive tests, where

n ≥ 0, and m negative tests, where m > 0, a complete repair P ′

satis�es the following:

(1) P ′ passes all n positive tests, and

(2) P ′ passes allm negative tests.

�e expected usage of partial repairs is to encourage students

to modify their own incorrect program by taking into account the

partial repair as a hint. In fact, a partial repair is specialized for the

tests it addresses (the tests that turn from negative to positive a�er

the partial repair), the student needs to generalize the partial solu-

tion shown to him or her. By comparing a generated partial repair

with the incorrect program, students can see when a particular test

fails or passes, which can help a student understand why his or her

program fails the test addressed by the partial repair.

6.2 Tailoring Repair Strategy
Partial repairs are generated as hints, not as solutions. Typical hints

partial repairs can provide are as follows.

(1) Control-�ow hints. Students can see that a test can pass by

changing the control �ow of the program — which includes

changing the direction of an if-conditional, skipping over a

loop, and exiting a loop at a di�erent iteration than before.

(2) Data-�ow hints. Students can see that a test can pass by

adding or deleting statements which a�ects the data �ow of

the program.

(3) Conditional data-�owhints. It is o�en the case that the data-

�ow of the program should be changed only under a certain

circumstance. In this case, statement addition/deletion can

be guarded with a condition. �e deleted/added statements

provide data-�ow hints, while the guard conditions provide

control-�ow hints. Note that a data-�ow hint can be viewed as

a special case of a conditional data-�ow hint where a statement

S is guarded with either false (suggesting the deletion of S) or

true (suggesting the addition of S).

To facilitate the use of partial repairs as hints, we tailor the re-

pair strategy of APR, following Algorithm 1. Our repair strategy

searches for a control-�ow hint and a conditional data-�ow hint

in parallel (a data-�ow hint is the special case of a conditional

data-�ow hint). �is parallel use of tools is shown in Line 2 of the

algorithm: controlFix(Pb ,Tp ,Tn ) | | condDataFix(Pb ,Tp ,Tn ), where

Pb ,Tp , and Tn represent an input buggy program, positive tests

(passing tests), and negative tests (failing tests), respectively. Func-

tion controlFix and condDataFix search for a partial repair that can

be used as a control-�ow hint and a (conditional) data-�ow hint,

respectively. Parallel search for a partial repair stops when either a

repair is found or time budget is exhausted.

In function controlFix by which a control-�ow hint is searched

for, we invoke in parallel two APR tools, Angelix and Prophet,

both of which have repair operators that can modify the condi-

tional expressions of the if/loop statements. We restrict the repair

space only to conditional expression changes when looking for a

control-�ow hint. Meanwhile, in function condDataFix by which a

conditional data-�ow hint is searched for, we use a two-step repair

process. In the �rst step, we modify the data-�ow of the program

by adding/deleting/modifying statements such that one of negative

tests becomes positive a�er the modi�cation. At this step, we do

not preserve positive tests; that is, the modi�ed program P ′ may fail

some/all of positive tests. However, in the second step, we re�ne

P ′ such that the re�ned program P ′′ passes all positive tests. Our

re�nement process takes place as follows. Given a statement S that

is added or deleted in the �rst step, we transform S into “if (true)
{ S }” or “if (false) { S }”, respectively. Similarly, if a statement S is

modi�ed into S ′ in the �rst step, we prepare “if (true) { S’ } else { S }”.
�e re�ned program P ′′ is obtained by replacing the tautological

conditions (true or false) guarding the added/deleted/modi�ed state-

ment with di�erent expressions with which P ′′ passes all positive

tests and the negative tests addressed in the �rst step. We invoke

multiple APR tools in parallel in the two-step repair process of �nd-

ing a conditional data-�ow hint. In the �rst step, we invoke four

tools, that is, GenProg, AE, Prophet, and Angelix (for Prophet and

Angelix, we turn o� the options that allow conditional expression
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Algorithm 1 Partial Repair Generation Using Our Repair Strategy

Input: buggy program Pb , test suite T
Output: partially repaired program Pr

. Run Pb with T to �nd out positive tests Tp and negative tests Tn .

1: (Tp, Tn ) ← run(Pb , T )

. Parallel call. Successful termination of one function (termination with

a non-NULL value) kills the remaining function.

2: Pr ← controlFix(Pb ,Tp, Tn ) | | condDataFix(Pb ,Tp, Tn )

. Function controlFix searches for a partial repair changing the

control-�ow of the program, using Angelix and Prophet. If a partial

repair is not found, NULL is returned.

3: function controlFix(Pb ,Tp ,Tn )

. Set the repair con�guration such that a partial repair changing the

control-�ow of the program is searched for.

4: C ← {control, par tial }
5: return runAngelix(C ,Pb ,Tp ,Tn ) | | runProphet(C ,Pb ,Tp ,Tn )

6: end function

. Function condDataFix searches for a partial repair changing the

data-�ow and/or the control-�ow of the program. If a partial repair is

not found, NULL is returned.

7: function condDataFix(Pb ,Tp ,Tn )

. Set the repair con�guration such that a partial repair changing the

data-�ow of the program is searched for.

8: C ← {data, par tial }
. Search for a program Pi that makes at least one of the tests in

Tn pass, while ignoring Tp . Ti represents a set of tests in Tn that pass

with Pi .
9: (Pi , Ti ) ← runGenProg(C ,Pb ,Tn ) | | runAE(C ,Pb ,Tn ) | | runAn-

gelix(C ,Pb ,Tn ) | | runProphet(C ,Pb ,Tn )

. If Pi is found (i.e., Pi != NULL), re�ne Pi such that all the tests in

Tp pass.

10: if Pi != NULL then
11: C ← {control, complete }
12: Pr ← RunAngelix(C ,Pi ,Tp ∪Ti )
13: end if
14:

. If re�nement with Angelix fails (i.e., Pr == NULL), try with

Prophet.

15: if Pi != NULL && Pr == NULL then
16: C ← {control, complete }
17: Pr ← RunProphet(C ,Pi ,Tp ∪Ti )
18: end if
19: return Pr
20: end function

changes). In the second step where guards are modi�ed, we invoke

only Prophet and Angelix, since GenProg and AE do not support

expression-level modi�cations.

6.3 Incremental Repair
Our overall repair algorithm optionally allows incremental repair,

that is, generating a series of partial repairs incrementally. More

speci�cally, a new partial repair Pi+1 is generated based on the

previous partial repair Pi generated at the i-th iteration. �e number

of passing tests grows as the iteration proceeds, and the tests passed

by Pi are also passed by Pi+1. �e iteration proceeds until either

there is no remaining negative (failing) test or a partial repair is not

found. A repair obtained through the incremental repair approach

can be useful for graders to whom showing as many changes as

possible can provide hints about why the student program is wrong.

7 EVALUATION
We evaluate the feasibility of using our partial repair algorithm

for introductory programming assignments. �e following are our

research questions.

RQ1 How o�en are repairs generated when our partial repair

algorithm is employed in addition to the complete repair algorithm

of the existing APR tools? A high repair rate is a prerequisite for

using APR for introductory programming assignments. �e current

state-of-the-art APR tools fail to generate repairs more o�en than

not, as shown in Section 4. How signi�cantly does a new repair

strategy allowing both complete and partial repairs improve repair

rate?

RQ2 When are repairs not generated even a�er employing our

partial repair algorithm? If there are common reasons for those

cases of repair failure, they should be addressed in future tools.

RQ3 Do tool-generated partial repairs help students in �nding a

solution more e�ciently than when repairs are not shown?

RQ4 Similarly, do tool-generated repairs help graders in grad-

ing student programs more e�ciently than when repairs are not

shown?

To investigate our research questions, we conduct a tool experi-

ment (to address RQ1 regarding repair rate), repair failure analysis

(to address RQ2), and user study (to address RQ3 and RQ4).

7.1 Tool Experiment
We developed a tool that implements our partial repair algorithm

on top of the same four existing APR tools as used in our initial

experiment. We apply our tool to the same dataset as used in

our initial experiment modulo the incorrect programs for which

complete repairs are already generated in the initial experiment.

Recall that the purpose of this tool experiment is to investigate

how signi�cantly a new repair strategy allowing both complete and

partial repairs improves repair rate. �e experiment was performed

on the same environment as used for the initial experiment (Intel

Xeon E5-2660 2.60Ghz processor with Ubuntu 14.04 64-bit operating

system and 62GB of memory).

Table 3 shows the results of our tool experiment. As compared

to our initial experiment that does not allow partial repairs, the

overall repair rate increases from 31% to 57%, showing about 84% of

improvement. Repair rate increases signi�cantly across all labs, as

shown in Figure 2. Meanwhile, the average successful repair time

stays as low as 58 seconds.

7.2 Repair Failure Analysis
Despite the increase of repair rate a�er allowing partial repairs,

neither complete repair nor partial repair was generated in 43% of

our subject programs. We compare these 43% of programs with

their correct versions to look for common reasons for repair failure.

Speci�cally, for each defect represented by the buggy version Pb
and the correct version Pc , we obtain the AST di�erences between

Pb and Pc using Gumtree [5], an AST di�erencing tool. We �rst
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Table 3: �e result of an experiment in which partial repairs
are sought for in case a complete repair is not found out. �e
overall repair rate is about 60%.

Lab # Programs # Fixed Repair Rate Time

Lab 3 63 14 22 % 3 s

Lab 4 117 61 52 % 27 s

Lab 5 82 52 63 % 85 s

Lab 6 79 49 62 % 69 s

Lab 7 71 44 62 % 51 s

Lab 8 33 28 85 % 99 s

Lab 9 48 26 54 % 70 s

Lab 10 53 36 68 % 35 s

Lab 11 55 33 60 % 77 s

Lab 12 60 35 58 % 52 s

Total 661 378 57 % 58 s

0

20

40

60

80

Lab 3 Lab 4 Lab 5 Lab 6 Lab 7 Lab 8 Lab 9 Lab 10 Lab 11 Lab 12 Total

Policy Complete Partial+Complete

Figure 2: �is plot shows the repair rate in percentage
(Y axis) across each individual lab (X axis). �e “Com-
plete” represents the cases in which only complete repairs
are counted, whereas the “Partial+Complete” represents the
cases in which partial repairs are also allowed in case a com-
plete repair does not exist.

perform manual inspection of the AST di�erences to derive a set of

common characteristics observed in the di�erences between Pb and

Pc . �en, we detect other such instances in our dataset, using our

extension of Gumtree where we encode the AST di�erence pa�erns

corresponding to the common characteristics we identi�ed. We

repeat this process until all programs for which repairs are not

generated are covered. Note that some programs are labeled with

multiple characteristics in this process.

Table 4 shows our analysis result. �e �rst column categorizes

the characteristics of the di�erences between the buggy program

(Pb ) and its corrected version (Pc ). �e second and third column

show the number of instances and portion of each category, respec-

tively, by which the table is sorted. �e following describes each

category for Pc − Pb which we represent as δ :

String �is corresponds to the case where δ involves changing

the string constants used in the program, such as adding a missing

Table 4: �is table shows the distribution of the di�erence
characteristics of the programs (i.e., Pcorrect − Pbuддy ) for
which neither complete nor partial repair is generated by
the APR tools.

Pcorrect − Pbuддy # Instances Portion

String 125 40 %

Array 44 14 %

Missing Function 38 12 %

Complex Control 35 11 %

Unsupported 30 10 %

Others 16 5 %

Empty Implementation 12 4 %

Wrong Parameters 6 2 %

Wrong Usage 6 2 %

space or a new line. It is observed that this category takes the most

number of instances of repair failure (40%).

Array �is corresponds to the case where δ involves changes

in arrays that include array index changes, array size changes,

adding/deleting array access expressions, and using array lengths

in the program.

Missing Function �is corresponds to the case where δ involves

adding a function call.

Complex Control �is corresponds to the case where δ involves

complex control-�ow changes that include control-�ow changes

in a nested loop and control-�ow changes in multiple conditionals.

While Angelix and Prophet can change conditional expressions,

they do not exhaustively consider all possible control-�ow changes.

Unsupported �is corresponds to the case where Pc requires

expressions that cannot be synthesized by the current APR tools

such as the expressions involving the modular operator and non-

linear expressions.

Empty Implementation �is corresponds to the case where the

main function of Pb is empty or contains only a return statement.

We do not label other characteristics for the programs belonging to

this category.

Wrong Parameters �is corresponds to the case whereδ involves

changing multiple parameters of a function call expression. While

Angelix can change multiple expressions, it does not exhaustively

consider all possible combinations.

Wrong Usage �is corresponds to the case where students use

language constructs in a semantically wrong way. �is includes mis-

takenly adding a semicolon before a for-loop body (i.e., using for(…);
{…} instead of for(…) {…}), using scanf(…,x) instead of scanf(…,&x)
where x represents a variable, using ++x when x+1 is required, using

‘x’ when x is required, and using *x when x is required.

Others �is covers the rest of the characteristics.

�e fact that the portions of the top two categories (String and

Array) take more than 50% suggests that it would be most cost

e�ective to strengthen repair operators that can manipulate strings

and arrays in future APR tools.

7.3 User Study
We perform a user study with novice students and graders to see
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(a) Programming Experience (b) Skill Level for C Programming
On a scale from 1 (Novice) to 5 (Expert)

Figure 3: Background of Teaching Assistants

(1) whether automatically generated feedback can help students

solve the problem on their own with the help of these pieces of

feedback.

(2) whether automatically generated feedback can help teaching

assistants (TAs) to grade submissions e�ciently (faster grading)

and e�ectively (only small variation in the marks for similar

submissions.)

For student study, we selected 5 problems for which had buggy

submissions and the partial repairs generated by our algorithm. We

divided the students into the experimental group for whom the

generated repairs are presented and the control group for whom

the repairs are not presented. Repairs are presented in the form of

a comment around the repaired lines of the buggy submission. We

asked each student to �x one randomly chosen buggy submission.

�e study was unannounced, that is, the task was provided as a

bonus question along with other regular assignment problems. �e

weight of the �x-task was kept low so that it does not impact the

overall grade of the students in the course. �e participation was

voluntary, and in total 263 students submi�ed their completed pro-

grams (140 students in the without-repair group, and 123 students

in the with-repair group).

Similarly, to estimate the impact of repairs on the grading task,

we did a study of 35 TAs. Figure 3 summarizes the background of

these TAs, which we collected using a pre-study survey. For the

study, we randomly collected 43 buggy submissions from the subset

of our dataset for which our algorithm successfully generates either

complete or partial repairs. �ese 43 buggy submissions correspond

to 8 di�erent programming problems. We asked the TAs to grade

these submissions. �e TAs were divided into two groups. �e �rst

group was given 22 tasks (set A) without repair, and 21 tasks (set

B) with repairs, while the second group was conversely given set A

with repairs, and set B without repairs. We compared the time taken

and marks assigned by the TAs for these task. �e reference marks

for these submissions were provided by the instructor who did

not participate in the study, and did not have access to the repairs.

With TAs, we also conducted a post-study survey to understand

the experience of TAs with repairs.

Figure 4 and Figure 5 respectively show the distribution of time

taken by the students for the solving task, and time taken by the

TAs for the grading task. In both �gures, time is shown in seconds.

In both �gures, the X axis shows the problem IDs and Y axis the

time taken. We found that repairs a�ect novice students and TAs

di�erently. While the problem solving time of the students tends to

increase in the group where repairs are shown, the grading time of

the TAs tends to decrease when repairs are shown. �at is, when

Figure 4: Time taken by students for bug �x task

Figure 5: Time for the grading by TAs

Table 5: Analysis of TAGrading Time. “Yes” TAs correspond
to those who answered in the post-study survey that repairs
were useful, while “No” TAs answered conversely.

Grading All TAs “Yes” TAs “No” TAs
Time Without With Without With Without With
(sec) Repair Repair Repair Repair Repair Repair
Average 173.76 135.41 155.08 124.83 191.40 145.39

Median 150.95 133.68 120.70 126.90 166.87 144.85

Stdev 96.70 40.88 99.98 40.30 92.82 39.96

repairs are shown, the students tend to solve the problems more

slowly, while the TAs tend to grade the problems more quickly. We

conjecture that these opposite trends between novice students and

TAs are due to their di�erent levels of expertise and the format

of feedback. In our post-study survey, we asked TAs (1) how do

you categorize the errors of the program based on the suggested

repair? and (2) what kind of modi�cations are necessary in the

suggested repair to obtain a correct solution? �e results are shown

in Figure 6. In the �rst question, the majority of TAs identi�ed the

errors in loops/conditionals (see Figure 6(a)), while in the second

question, the most number of answers were given to the changes in

loops/conditionals (see Figure 6(b)). �ese results suggest that TAs

are capable of generalizing suggested repairs that are overly spe-

cialized to the tests. It is likely that this generalization capability of

TAs helps them �nish the grading tasks more e�ciently. However,

novice students do not seem to know how to e�ectively make use

of suggested repairs, unlike TAs. Post-processing of repairs would

be necessary for novice students.
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ID Description
CR1 Floating Point Operations

CR2 Array Accesses

CR3 Library Functions

CR4 User de�ned Functions

CR5 Missing Character

CR6 Loops

CR7 Conditionals

CR8 Missing Whitespace in the Output

CR9 Missing Values in the Output

CR10 String Modi�cations

CR11 Others

(a) Error categories identi�ed by TAs

ID Description
CH1 Fix Constants

CH2 Fix Operators

CH3 Fix condition for Conditionals or Loops

CH4 Fix Array Indices

CH5 Insert/Delete Character (e.g., ;, &)

CH6 Forma�ing the Output (whitespaces)

CH7 Others

(b) Changes suggested by TAs

Figure 6: Results of the post-study survey for TAs

Figure 7: Distribution of marks assigned by TAs

Table 5 shows a closer look at the grading performance of TAs.

�e �rst column (All TAs) shows the performance statistics for all

TAs (both without repair and with repair), and the second column

(“Yes” TAs) and the third column (“No” TAs) show the statistics for

those who said in the post-study survey that the suggested repairs

are useful and not useful, respectively. Half of the TAs answered the

repairs are useful (the Yes group) and the rest of the half answered

not useful (the No group). Given that the average grading time is

smaller in the Yes group, high performers tend to feel more strongly

that the suggested repairs are useful. In both groups, the average

grading time decreases when repairs are shown. Also notably, the

standard deviation decreases in both groups, indicating that the gap

between high performers and low performers becomes narrower

when repairs are shown.

Figure 7 shows the marks awarded by the TAs for 15 randomly

picked submissions out of 43 tasks for which reference marks were

provided by the instructor who did not participate in the study,

without looking at the generated repairs used in the study. In the

graph, the X-axis and Y-axis show, respectively, the problem IDs and

marks awarded (between 0 and 20). �e overall trends are similar

among the group for whom repairs are presented (experimental

group), the group for whom repairs are not presented (control

group), and the independent instructor. In majority of the cases

the absolute di�erence between the experimental group and the

control group is not much: ≤ 1 for 22/43 cases and ≤ 2 for 30/43

cases. Meanwhile, in our student study, most of the students �x

the buggy submissions correctly, regardless of whether the repairs

are shown or not (94% of correct answer rate when repairs are not

shown, and 95% when repairs are shown).

8 THREATS TO VALIDITY
In our tool experiments, one of APR tools, GenProg, uses a random

algorithm (genetic programming), which can produce di�erent re-

sults for each run. To mitigate this threat, we applied the same seed
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to GenProg in our initial experiment (Section 4) and the second

tool experiment (Section 7.1). Also, the fact that the rest of the APR

tools employed for our experiments (AE, Prophet, and Angelix) use

deterministic repair algorithm further mitigates this threat. Our

repair failure analysis (Section 7.2) may be restricted by the di�er-

ence categories to which our analysis tool categorizes. To mitigate

this threat, we manually inspected the di�erences and added new

categories when the previously used categories were not su�cient.

Our dataset, while collected from the actual novice students tak-

ing an introductory program course, may not be representative

of all student programs. Similarly, in our user study, participating

students and TAs may not represent all novice students and graders.

9 RELATEDWORK
Many di�erent techniques have been applied to automated feed-

back generation, and each technique has di�erent advantages and

disadvantages. Program equivalence checking is used in [14] where

behavioral di�erence between a student program and its reference

program (di�erences in input-output relations) is reported to the stu-

dent as feedback. Since program equivalence checking is generally

undecidable, [14] performs equivalence checking in a constrained

manner — that is, a reference program that is structurally similar to

the given student program is used when checking the equivalence.

�is reference program can be obtained either manually (the in-

structor prepares a reference program that is structurally similar to

the student program) or semi-automatically (the instructor selects

one of correct student programs that are grouped into the same

cluster). Since this approach based on program equivalence uses a

reference program as a speci�cation, it can generate feedback even

when there is no failing test manifesting the error. However, this

approach requires a reference program that is structurally similar

to the given student program. While such a structurally similar

program can be searched for among student programs that pass all

tests, it is non-trivial for the instructor to validate the correctness

of a program, and a validation mistake causes the tool to generate

false feedback to the students.

A model-based approach is used in [37] where an instructor-

given error model describing possible student errors de�nes how

the given incorrect program is allowed to be modi�ed. To search for

a correct modi�cation e�ciently, program synthesis technique is

employed. While an error model can capture some common student

errors and hence can guide feedback generation, it also restricts

the search for feedback only to the common errors described in

the error model. �e fact that an error model should be prepared

beforehand by the instructor is another disadvantage.

Static analysis is used in [1, 43] where dependence graphs ex-

tracted from a student program and a reference program are com-

pared to each other, in order to identify a statement of the student

program that can potentially cause semantic di�erence from the

reference program. As usual in conservative static analysis, these

approaches can guarantee not to miss a semantic error, while as

a �ip side, an error can be falsely reported. In [6], ASTs (abstract

syntax trees) are used as analysis representation. Program transfor-

mation rules are extracted by analyzing necessary AST changes.

A learning-based approach is used in Refazer [36] and Deep-

Fix [13]. Refazer learns programs transformation rules from the

past program changes, similar to [25, 26] where systematic edits

(similar, but not identical, changes made in many program loca-

tions) are learned from the past program changes. Meanwhile,

DeepFix applies deep learning to the correction of syntactic errors

that cause compilation failure. While learning-based approaches

can complement the existing approaches when the previous sub-

missions of a programming assignment are available (e.g., an APR

tool, Prophet [21], used in our study also learns a repair model from

human patches), their applicability and e�ectiveness are restricted

by the availability and the quality of the previous submissions.

Automated program repair (APR) is fully automatic unlike some

approaches requiring additional input from the instructor, such

as an error model and multiple reference programs from multiple

clusters. In APR, it is su�cient to provide a student program and a

test suite. Although generated repairs can be imperfect and overly

specialized to the provided test suite [38], this issue is gradually

addressed in recent work of APR [4, 18, 21, 23, 42]. Meanwhile,

fault localization can also be used to provide hints to students, as

suggested in [3]. In fact, APR also performs fault localization in

the sense that APR performs fault localization before synthesizing

a �x. Furthermore, students can also see how a previously failing

test passes a�er �x, which provides an additional hint.

�ere have been several user studies in the area of program

debugging and repair [15, 30, 40]. Unlike these user studies con-

cerning the productivity of professional developers, our study is

conducted with di�erent target of users, that is, novice students

and graders. Overall, our study provides holistic information about

the feasibility of using APR for introductory programming assign-

ments, including how o�en repairs are generated, why repairs are

failed to be generated, and how useful generated repairs are for

students and graders.

10 CONCLUSION
In this paper, we have explored the possibility of using APR as

a feedback generation engine of intelligent tutoring systems for

introductory programming. We have performed a feasibility study

with four state-of-the-art APR tools (GenProg, AE, Prophet, and

Angelix) and real student programs collected from a course on intro-

ductory programming. Although out-of-the-box application of APR

tools seems infeasible due to the low repair rate, we have shown

that repair rate can be boosted by tailoring the repair policy and

strategy of APR to the needs of intelligent tutoring. Most notably,

adopting a partial repair policy akin to the next-step hint gener-

ation advocated in the education �eld seems e�ective in terms of

improving feedback generation rate. We have also shown through a

repair failure analysis that repair failures are o�en caused by a few

common reasons. Further improvement of feedback generation rate

is expected by strengthening repair operators manipulating strings

and arrays in future APR tools. Lastly, we have shown our user

study results performed with novice students and graders (TAs).

In contrast to the TAs who use the suggested repairs as hints to

e�ciently complete the grading tasks, the novice students do not

seem to know how to e�ectively make e�cient use of suggested

repairs to correct their programs. We leave as future work a study

of e�ective post-processing of repairs to transform them to hints

more comprehensible to novice students.
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