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Abstract—Recent advances in program repair techniques have
raised the possibility of patching bugs automatically. For an
automatically generated patch to be accepted by developers, it
should not only resolve the bug but also satisfy certain human-
related factors including readability and comprehensibility. In
this paper, we focus on the simplicity of patches (the size of
changes). We present a novel semantics-based repair method that
generates the simplest patch such that the program structure of
the buggy program is maximally preserved. To take into account
the simplicity of repairs in an efficient way (i.e., without explicitly
enumerating each repair candidate for each fault location),
our method fuses fault localization and repair generation into
one step. We do so by leveraging partial MaxSAT constraint
solving and component-based program synthesis. We compare
our prototype implementation, DirectFix, with the state-of-the-
art semantics-based repair tool SemFix, that performs fault
localization before repair generation. In our experiments with
SIR programs and GNU Coreutils, DirectFix generates repairs
that are simpler than those generated by SemFix. Since both
DirectFix and SemFix are test-driven repair tools, they can
introduce regressions for other tests which do not drive the repair.
We found that DirectFix causes substantially less regression
errors than SemFix.

I. INTRODUCTION

Simple is better! When repairing a program, it is preferable

to construct patches which are simple and readable. This is

because responsible software maintainers would not blindly

accept a suggested patch; rather, they would review and inspect

a patch carefully before accepting it [1], [2] – which occurs

only if they judge that the patch is correct (i.e., the bug

is resolved) and safe (i.e., no new bug is induced). They

would also modify the patch and add more tests, if necessary.

Thus, simple and small patches would be more easily accepted

by maintainers than more complex alternatives. The ease of

acceptance, as well as abundance of small/simple patches are

confirmed by the studies of [3], [4]. Hence it is instructive

to have program repair tools produce small patches. To the

best of our knowledge, existing automatic repair tools such

as GenProg [5], SemFix [6] and PAR [7] do not explicitly

take into account of the simplicity of a patch while generating

patches, although more general issues about patch quality

(e.g., patch maintainability [8] and users’ willingness to accept

patches [7]) have been raised and studied in recent years.
Finding a simple repair (we use “repair” and “patch” inter-

changeably) is not necessarily simple. In fact, it is challenging

to find the simplest (or a simple enough) repair among many

possible repairs, without enumerating each repair. Note that

even for finding one repair, existing repair tools often take

substantial amount of time. We propose in this paper an

efficient test-driven repair method (and its implementation

DirectFix) that can find simple repairs. Our repair method is

test-driven as in GenProg, SemFix and many other existing

repair methods. Our key observation is that the simplicity of

a repair is influenced by the choice of the program location

that is modified in a repair. If unsuitable program locations

are chosen to be modified, the corresponding repair is also

likely to be suboptimal (meaning unduly complex repairs).

In the next section, we show examples of such unnecessarily

complex repairs.

Existing test-driven repair methods rely on statistical fault

localization [9]–[11] to choose program locations to modify

(often called fault locations in the literature [12]). In general,

fault locations are selected in proportion to their suspicious-

ness scores. High suspiciousness scores are assigned to the

program locations that execute more frequently in failing tests.

However, the simplicity of repairs is not a part of suspicious

score equations, and thus these scores have no direct relation-

ship with how simple a repair is. To include the simplicity of

repairs into the logic of choosing fault locations, we perform

fault localization and repair generation simultaneously in a

combined manner.

The main intuition behind our approach is to (a) fuse

the fault localization and repair steps into a single step via

partial MaxSAT solving, (b) ensure that the resultant fused

method still remains scalable by using the buggy program as

a reference - we choose repairs which will cause minimal

changes to the buggy program.

The main technical contribution of this paper is to integrate

fault localization and repair generation in an efficient way –

without explicitly enumerating each repair candidate for each

fault location. We achieve this by reducing the problem of

program repair into an instance of the Maximum Satisfiability

problem (more specifically, a Partial MaxSMT problem). For

a given buggy program and a test suite, we formulate a logical

formula in a way that a model (satisfiable assignment) of this

formula is the simplest repair – simplest in the sense that the

structure of the original buggy program is preserved as much

as possible. While the nature of MaxSMT allows removing

existing expressions of a buggy program (our simple repairs

are suggested at the expression level), we can replace those

removed expressions with new ones by using component-

based program synthesis [13]. We implement our approach

into a tool, DirectFix, that formulates a necessary formula and

solves it using our Partial MaxSMT solver implemented on top

of Z3 SMT solver [14]. We also evaluate our tool on in total

98 buggy versions of SIR programs and 9 real bugs of GNU

Coreutils, which exemplify the mistakes programmers can
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1 x = E1; / / E1 represents an expression.
2 y = E2; / / E2 represents an expression.
3 S1; / / S1 represents a statement. Neither x nor y is redefined by S1.
4 i f (x > y) / / FAULT: the conditional should be x >= y
5 return 0;
6 else
7 return 1;

(a) A buggy program snippet; a bug is in line 4.

1 x = E1; y = E2;
2 if (x == y) { S1; return 0; } / / This line is one possible repair.
3 S1;
4 i f (x > y)
5 return 0;
6 else
7 return 1;

(b) A repair that resembles a GenProg repair

1 x = E1;
2 y = E2;
3 S1;
4 i f (x >= y) / / SIMPLE FIX: >= is substituted for >
5 return 0;
6 else
7 return 1;

(c) An alternative simpler repair; an operator is replaced.

Fig. 1. The first motivating example

often make. Despite the limited size of our subject programs

and tool limitations inherited from the underlying tools upon

which DirectFix is built – most notably, VCC [15], which

transforms a C program into a logical formula, currently

cannot handle floating point arithmetic; in such cases, we

designated the (transformable) suspicious functions, assuming

that developers have insight about potential buggy functions

–, the overall experimental results are promising. DirectFix

suggests repairs successfully 59% of the time. Moreover, 56%

of those repairs are equivalent to the ground truth repairs, and

89% of them alter the same program line(s) as the ground

truth versions. Such figures are significantly higher than when

SemFix [6] is applied to the same subjects with the same test

suites and the same information about suspicious functions

(i.e., more than 3 times of equivalent repairs and more than 2

times of same-line repairs). Recall that SemFix performs fault

localization and repair as separate steps, and does not consider

the simplicity of the repairs. We also found in our experiments

that DirectFix repairs cause regression errors (when checked

against the test universe and not just the test-suite driving the

repair) less frequently than SemFix repairs.

II. MOTIVATING EXAMPLES

We present three simple yet motivating examples in this

section (in Section VII, we also present our repairs for actual

programs). Consider the program snippet in Fig. 1(a). This

program is supposed to return 0 if x >= y holds at the end of the

program; otherwise, it should return 1. However, the developer

of this program made a small mistake of not considering a

case of x==y. Here, Fig. 1(b) and 1(c) show two different

valid repairs. Notice that the former repair is more complicated

than the latter one. Most developers would prefer the second

simpler repair. To the best of our knowledge, existing repair

1 i f (x > y) / / FAULT 1: the conditional should be x >= z
2 i f (x > z) / / FAULT 2: the conditional should be x >= y
3 out = 10;
4 else
5 out = 20;
6 else out = 30;
7 return out ;

(a) A buggy program snippet; bugs are in line 1 and 2.

1 i f (x > y)
2 i f (x > z)
3 out = 10;
4 else
5 out = 20;
6 else out = 30;
7 return ((x>=z)? ((x>=y)? 10 : 20) : 30); / / This line is one possible repair.

(b) A repair that resembles a SemFix repair

1 i f (x >= z) / / SIMPLE FIX: >=z is substituted for >y
2 i f (x >= y) / / SIMPLE FIX: >=y is substituted for >z
3 out = 10;
4 else
5 out = 20;
6 else out = 30;
7 return out ;

(c) An alternative simpler repair; operators and variables are replaced.

Fig. 2. The second motivating example

tools do not take account of how simple a repair is. They

stop looking for a repair once one is found, no matter how

complex that repair is. Indeed, a repair in Fig. 1(b) resembles

a repair generated by GenProg [5]. GenProg grafts existing

code onto a buggy program in an attempt of repair. As a

result, GenProg often generates repairs that look nonsensical

to human developers, as pointed out in [7].

Meanwhile, a more recent repair tool, SemFix [6], seems

to generate simpler repairs than GenProg (user-studies are

yet to be conducted to fully validate this, but intuitively this

is so because SemFix [6] performs repair at the expression

level, unlike GenProg that performs repair at the statement

level). However, SemFix still often generates repairs that are

more complex than necessary. Fig. 2 shows such an example.

Given a buggy program in Fig. 2(a) – the first two lines are

mistakenly swapped, and the equal signs (=) are omitted –,

SemFix can generate a repair shown in Fig. 2(b). Compare

this repair with an alternative repair shown in Fig. 2(c). The

latter repair is simpler despite that it modifies two lines of a

program (SemFix cannot modify multiple lines). These two

examples also show that a buggy program can be repaired in

multiple ways producing repairs of varying simplicity.

There is one more important reason for selecting a repair

carefully: the reliability of a repaired program (the likelihood

that the repaired program not only resolves bugs in the given

test-suite, but also does not introduce new bugs shown by tests

outside the test-suite) varies depending on a selected repair.

Consider a buggy program in Fig. 3(a) that checks whether the

character c is included in the string (character array) s. The
table in Fig. 3(b) shows the expected and actual input/output

relationship. The first test fails because all the characters of

string s are not scanned while looking for the same character

as the one in c. Notice in the table that variable k does not
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1 / / FAULT: k is NOT equal to the length of array s.
2 for ( i =0; i<k ; i ++)
3 i f (s [ i ] == c) return TRUE;
4 return FALSE;

(a) A buggy program that checks if the character c is included in string s.

Input Output

s c k expected actual

"ab?" ’?’ 2 TRUE FALSE

"ab?c" ’?’ 3 TRUE TRUE

"!ab" ’!’ 2 TRUE TRUE

(b) Expected input and output

1 for ( i =0; i <k ; i ++)
2 / / The following line is one possible repair.
3 i f (c == ’?’ || c == ’!’) return TRUE;
4 return FALSE;

(c) A (buggy) repair that passes the above tests

1 for ( i =0; i<=k ; i ++) / / SIMPLE FIX: <= is substituted for <
2 i f (s [ i ] == c) return TRUE;
3 return FALSE;

(d) A more reliable repair

Fig. 3. The third motivating example

hold the value of the length of s, it holds a value one less

than the length. As before, more than one repair exist for this

buggy program. Fig. 3(c) and 3(d) show two possible repairs

– both repairs pass all the tests in Fig. 3(b). However, the first

repair (Fig. 3(c)) looks hazardous. What if a character other

than ’?’ or ’!’ is searched for? While such potential hazard

of a repair can be diminished by choosing a right test suite,

what is a right test suite is another important research question

that has not been thoroughly addressed yet.

Meanwhile, the second simpler repair (Fig. 3(d)) preserves

the original correct behavior, as well as correcting the buggy

behavior. The contrast between these two repairs suggests the

following hypothesis. The rationale behind the hypothesis is

that simpler repairs are likely to modify the behavior of a

program in a more restricted fashion.

Hypothesis. Simple repairs are less likely to change the
correct behavior of the original version than more complex
repairs. Thus, simple repairs are likely to be less hazardous.

Existing test-driven program repair tools perform fault lo-

calization upfront, and search for a repair around the program

locations marked suspicious at the fault localization phase.

Therefore, a straightforward way to find the simplest repair

is to iteratively generate a repair at each combination of

suspicious program locations, and select the simplest repair.

However, it is apparent that this straightforward approach

would not scale, considering the fact that even finding a single

repair often takes substantial amount of time. To find simple

repairs more efficiently (without explicitly enumerating each

repair candidate), we integrate the two phases of program

repair – (i) fault localization and (ii) repair search – into a

single step.

III. BACKGROUND

DirectFix is a semantics-based program repair approach that

exploits recent advances of SMT solvers. It reduces repair

problem to Maximum Satisfiability problem. Particularly, this

approach constructs a logical formula, a solution to which

corresponds to a fix. Our encoding is based on Component-

based Synthesis [13] extended to produce syntactically mini-

mal changes as well as to improve scalability.

A. Preliminaries

The Satisfiability problem in propositional logic (SAT) is

the problem of determining whether a given formula ϕ has a

model. Maximum Satisfiability (MaxSAT) is a generalization

of SAT whose goal is to find the maximum number of clauses

of a given formula that can be satisfied. Satisfiability Modulo
Theories (SMT) is a satisfiability problem with respect to

given background theories. MaxSMT is a generalization of

MaxSAT on SMT. Partial Maximum Satisfiability (pMaxSAT)

for a set of soft clause s and a set of hard clauses h is a

problem of finding the maximum subset smax of clauses s
such that smax∧h is satisfiable. pMaxSMT is a generalization

of pMaxSAT on SMT.

DirectFix utilizes program semantics expressed through a

logical formula called trace formula in the literature [16], [17].

Definition 1 (Trace Formula). A trace formula TF of a
deterministic program P is a logical formula that satisfies the
following property. Given the input I of program P ,

TF (I,O) is

{
satisfiable if the output of P is O
unsatisfiable if the output of P is not O

where TF (I,O) denotes the trace formula TF whose input
variable is bound with I, and output variable with O.

B. Component-based Synthesis [13]

Expressions and, in general, programs that satisfy

given requirements can be generated automatically through

Component-based Synthesis [13] (CBS). Here we present the

original CBS technique, our extensions and optimizations are

given in Section V.

Definition 2. Let v be a variable, V be a set of variables such
that v /∈ V , F be a set of operators, O be a constraint over
{v} ∪ V called oracle. Component-based Synthesis (v, V , F ,
O) is a problem of finding an expression e such that
• e is constructed using a subset components C = V ∪ F

and constants;
• O ∧ (v = e) is satisfiable.

This approach constructs expressions by connecting primi-

tive building blocks called components with each other. Com-

ponents could be constants or variables or operators. The cor-

rect linkage between components is determined using an SMT

solver. Specifically, semantics of components, semantics of the

connections between them as well as the oracle constraint are

used to construct an SMT formula which we call Component-
based Encoding (CBE).
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yout

x y >

>in
2 >out

•

>in
1

0

xout

1 2

L(>out) = 2

L(>in
1 ) = 0

L(>in
2 ) = 1

L(xout) = 0

L(yout) = 1

L(vin) = 2

Fig. 4. The inputs and output of the components of expression x > y are
allocated in the interval [0, 3). The output is bound by the variable v.

The idea of CBE is to consider expressions as circuits.

Each component has a set of inputs and an output. Then, to

synthesize desired expression, the solver needs to find the right

connections between components inputs and outputs. In order

to capture information about connections, for each input and

output, a numeric variable called location variable is defined.

The meaning of location is straightforward: an input and an

output are connected iff they have the same location.

CBE defines relationship between values and locations of

components’ inputs and outputs. For each input and output,

we introduce a variable that corresponds to its value. We use

the following notation: for component c, the variable cout

corresponds to the value of its output, the variable cink is the

value of its k-th input. We indicate the number of inputs of

c as NI (c). We denote location variables using the function

L. For example, the location variable of the first input of

the component c is L(cin1 ). Fig. 4 demonstrates an example

of an assignment of locations variables. The components of

the expression x > y are allocated within the interval [0, 3).
The output of the variable x has location 0, the output of the

variable y has location 1, and the output of the operator > is

located at 2. The first input of> is linked to x, the second input

of > is linked to y. Assume that the output of the expression

is bound by the variable v, that is v = x > y. The output

of the circuit is marked by the bullet and is indicated by the

constraint L(vin) = 2. The expression x > y can be trivially

reconstructed using the values of the location variables. We

assume that there is a function Lval2Prog that builds an

expression from an assignment of location variables.

CBE consists of three types of constraints: well-formedness
constraints, semantics constraints and connections constraints.
Well-formedness constraints (φwpf) restrict location variables

so that any satisfying assignment to these variables corre-

sponds to an expression of a valid structure. These constraints

include range constraints (φrange) that allocate all components

inputs and outputs within a range, consistency constraints

(φcons) that ensure that the output of each component has

unique location, and acyclicity constraints (φacyc) that forbid

cyclic connections.

φwpf
def
= φrange ∧ φcons ∧ φacyc

φrange
def
=

∧
c∈{v}∪C

(
0≤L(cout)< |C| ∧

∧
k∈[1..NI (c)]

0≤L(cink )< |C|
)

φcons
def
=

∧
(c,s)∈C×C,c�=s

L(cout) �= L(sout)

φacyc
def
=

∧
c∈C,k∈[1..NI (c)]

L(cout) > L(cink )

Semantics constraints (φlib) are defined for each compo-

nent. They specify the semantics of the component as the

relations between its inputs and output. For example, semantics

constraint for the component c corresponding to the addition

operation is defined as cout = cin1 +cin2 . Semantics constraints

for a component c corresponding to a variable x is defined as

cout = x. Similarly, the semantics constraint for a component

c corresponding to a constant a is cout = a.

Connections constraints (φconn) capture the semantics of an

expression to be synthesized through the semantics of the

components and the connections between them.

φconn
def
=

∧
(c,s)∈C×{v}∪C

k∈[1..NI (s)]

L(cout) = L(sink )⇒ cout = sink

Theorem 1. Let v be a variable, V be a set of variables such
that v /∈ V , F be a set of integer operators, O is a constraint
over {v} ∪ V . φ = φwpf ∧ φlib ∧ φconn ∧ O is a Component-
based Encoding, that is Lval2Prog produces a solution to
the Component-based Synthesis problem (v, V , F , O) taking
as input v, C = V ∪F and any model of φ as an assignment
of the location variables.

Described CBE is only suitable for representing oracle

corresponding to a single test case. Indeed, if we conjoin

input-output constraints for different test cases, the formula

is trivially unsatisfiable. To extend this encoding for several

test cases, we rename variables in the encoding formula so

that each test case uses unique variables names. Then, the

formula that captures all given input-output relationships is a

conjunction of renamed formulas for each test case.

IV. OVERVIEW OF OUR APPROACH

To find a repair, we first translate a given buggy program

into a trace formula. For example, Fig. 5(b) demonstrates the

trace formula for the function foo shown in Fig. 5(a). This

function is buggy, and its test test_foo fails (we use a single

test in this example for simplicity). The given test is translated

into the following oracle constraint:

O def
= (x1 = 0) ∧ (y1 = 0) ∧ (result = 3)

The conjunction ϕbuggy ∧O is unsatisfiable, reflecting the fact

that the test fails.1

Our goal is to find which expressions of ϕbuggy need to

be modified and how they should be modified, so that this

modified formula ϕrepair makes ϕrepair ∧ O satisfiable. In our

example, the ground truth repair is as follows:

1If there are multiple tests, say two, we formulate Rename(ϕbuggy ∧O1)∧
Rename(ϕbuggy ∧ O2), where function Rename returns the input formula
after replacing its variables with fresh variables.
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1 in t foo( in t x , in t y) {
2 i f (x > y) / / FAULT: the conditional should be x >= y
3 y = y + 1;
4 else
5 y = y− 1;
6 return y + 2;
7 }
8
9 void test_foo () { assert ( foo(0,0)==3); }

(a) A buggy function and its test

ϕbuggy ≡ (if (x1>y1) then (y2=y1+1) else (y2=y1−1))

∧ (result = y2 + 2)

(b) The trace formula ϕbuggy for foo; variables xi and yi correspond to the
program variables x and y, respectively, and result to the return value of the
program

Fig. 5. A trace formula is constructed from a buggy program and its tests

ϕrepair
def
= (if (x1 ≥ y1) then (y2=y1+1) else (y2=y1−1))

∧ (result = y2 + 2)

Essentially, our repair method views a program as a circuit.

To generate a fix, it (i) cuts some of the existing connections

and (ii) adds new components and connections. To obtain

the simplest (the least destructive) repair, we want to cut as

few connections as possible. We achieve this by reducing the

problem of program repair into an instance of the maximum

satisfiability (MaxSAT) problem – more specifically, a partial

MaxSMT (pMaxSMT) problem.

To generate a repair based on pMaxSMT, we construct a

formula that we call repair condition. Given a trace formula

ϕbuggy , the repair condition ϕrc is the following:

ϕrc
def
= (if v1 then (y2 = v2) else (y2 = v3)) ∧ (result = v4)

∧ cmpnt(v1 = x1 > y1) ∧ cmpnt(v2 = y1 + 1)

∧ cmpnt(v3 = y1 − 1) ∧ cmpnt(v4 = y2 + 2)

The above formula ϕrc is semantically identical with ϕbuggy .

The only difference is that we substitute fresh variables vi for

the rvalue expressions of ϕbuggy , while keeping the equality

relationship between each vi and the expression it represents

(e.g., v1 = x1 > y1) inside the cmpnt function. This function

componentizes its parameter expression into a circuit form,

following the idea of Component-based Synthesis.

To obtain the simplest (the least destructive) repair, we use

a pMaxSMT solver. In pMaxSMT, a formula is split into

(i) hard clauses (clauses that must be satisfied) and (ii) soft

clauses (clauses that do not have to be satisfied). In hard

clauses, we include the clauses that express the semantics

of the component and the oracle data. Meanwhile, with soft

clauses, we constrain the structure of the program expressions.

For example, we construct the structure constraint for the

expression x > y as follows, which is essentially equivalent to

the circuit diagram in Fig. 4:

L(>in
1 )=L(xout) ∧ L(>in

2 )=L(yout) ∧ L(>out)=L(vin)

In the above constraint, we bind the output of the expression

with a fresh variable v, that is v = x > y. As shown, this

yout

x y >

>in
2 >out

>in
1

≥

>in
2

≥out

•

≥in
1

xout

0 1 2 3
Fig. 6. Repairing expression x > y by replacing > with ≥.

constraint specifies the connections between the components

of the expression as well as its output binding. After splitting

ϕrc ∧O into hard clauses and soft clauses as described above,

we feed ϕrc ∧ O into a pMaxSMT solver. Then, the solver

removes some structure constraints (if necessary), and returns

a model corresponding to a fix.

Fig. 6 shows how a solver can modify the expression

x > y using an additional component ≥ in order to repair the

program. Specifically, it removes one connection between the

outputs of > and the input of v corresponding to the structure

constraint L(>out)=L(vin), and adds three new connections:

(i) between the output of x and the first input of ≥, (ii) between

the output of y and the second input of ≥, and (iii) between the

output of ≥ and the binding variable v. Such new connections

are obtained by using a model for the repair condition, namely,

the values of the location variables.

We note that by looking for a model that maximizes the

number of satisfied clauses of ϕrc ∧O, we effectively cut and

add connections simultaneously. In other words, we perform

fault localization and repair generation at the same time.

V. METHODOLOGY

While automated program repair has been shown to be

effective, automatically generated patches can damage the

structure of the original program and introduce regressions.

To address this problem, we devise an approach that searches

for syntactically minimal fixes. Our approach combines fault

localization and correction into a single step, which is achieved

by reducing repair problem to Partial Maximum Satisfiability

Problem. Our pMaxSMT encoding is based on Component-

based Synthesis encoding extended to capture the structure of

the original program as well as to tackle scalability problems.

A. Repair Problem and Repair Condition

Unlike in CBS, our goal is to modify the existing expres-

sions of a buggy program in a way that changed expressions

make all tests pass. For this reason, we modify the synthesis

problem (Definition 2) into the following repair problem.

Definition 3 (Repair Problem). Let v be a variable, V be
a set of variables such that v /∈ V , F be a set of integer
operators, O be a constraint over {v}∪V called oracle. Let e
be a possibly faulty expression constructed using a subset of
components C = V ∪F and constants such that O∧ (v = e) is
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not satisfiable. Repair problem (v, e, V, F,O) is a problem of
finding a repaired expression e′ such that

• e′ is constructed using a subset of components C = V ∪F
and constants.

• O ∧ (v = e′) is satisfiable.

To solve a repair problem, we construct a logical formula

which we call repair condition that consists of two groups of

clauses: hard clauses and soft clauses. Algorithm 1 describes

how we generate a repair condition, given a test suite TS and

a trace formula TF as input. Our algorithm substitutes fresh

variables vi for the rvalue expressions (the expressions of TF
that are originated from the conditionals or right-hand-side ex-

pressions of a given buggy program2) to construct the formula

TF [ei 
→vi]. The formula TF [ei 
→vi] ∧ (
∧

i vi = ei) is seman-

tically equivalent to the initial trace formula TF . However,

expressions ei that we allow to modify are now distinguished

from the rest of the formula. Algorithm 1 applies CBE to all

the components of xi = ei together with additional component,

and the formula (
∧

i CBE(vi = ei)) ∧ TF (I,O)[ei 
→ vi] is

returned as hard clauses of the repair condition for each test

case (I,O) ∈ TS .

Meanwhile, we also extract the structure constraint φstruct

of each binding vi = ei, and classify φstruct as a soft clause.

The structure constraint of vi = ei encodes the structure of

expression ei using location variables. It also encodes the

binding of ei to vi using location variables. In the previous

section, we showed that expression x > y is encoded into the

following structure constraint φstruct:

φstruct
def
= L(>in

1 )=L(xout) ∧ L(>in
2 )=L(yout) ∧ L(>out)=L(vin),

where v is a fresh binding variable. The structure con-

straint is obtained via the inverse function of Lval2Prog
(Lval2Prog is a bijective function [13]).

Once a repair condition is obtained through Algorithm 1,

we feed this repair condition to a pMaxSMT solver. If the

solver finds a model, this model can be used to construct a

repair expression using Lval2Prog introduced in Section III.

Note that a pMaxSMT solver preserves as many original con-

nections as possible, which guarantees that DirectFix changes

the minimal number of program expressions, as formally

described below.

Definition 4 (Simplicity of repair). Let P be a program, TS
be a test suite with at least one failing test case, ei be a subset
of the expressions of P , C be a set of components. We call P ′

a simple repair of P if

• P ′ passes TS ;
• P ′ can be obtained from P by substituting some of the

subexpressions of ei with expressions constructed from
the components C;

• there is no program that passes TS and can be obtained
from P using a smaller number of such substitutions.

2The expressions of our TF are annotated with source code locations.

Algorithm 1 Repair condition generation

Input: trace formula TF and test suite TS
Output: repair condition as a pair of hard and soft constraints
1: Hard ,Soft ← True, True // Hard and soft clauses
2: Expr ← {e | e is a rvalue expression of TF}
3: for test case (I,O) ∈ TS do
4: for e ∈ Expr do
5: v ← a fresh variable
6: C′ ← select additional component for e
7: TF (I ,O)← TF (I ,O)[e 
→v] // replace e with v
8: φ← CBE for components of e and components C′

9: φstruct ← structural constraints for v = e
10: Hard ← Hard ∧ φ
11: Soft ← Soft ∧ φstruct

12: end for
13: // To be able to bound a variable with a different value
14: // in each test, we call function RENAME.
15: Hard ← RENAME(Hard ∧ TF (I ,O))
16: Soft ← RENAME(Soft)
17: end for
18: return Hard , Soft

B. Optimization
The use of soft constraints reduces synthesis time. Our

experiments demonstrate that a pMaxSMT solver implemented

on top of an SMT solver can find a solution for a formula with

soft constraints for some of the considered benchmarks, while

the SMT solver for the same formula without soft constraints

does not terminate within the timeout for all the benchmarks.

This fact suggests that the use of the structure of the previous

(buggy) versions improves synthesis performance.
For repairing some bugs, it is not sufficient to use only

components that are already present in the buggy expres-

sions. For such cases, we select additional components for

each expression in the program. Selecting many additional

components makes this approach not scalable. To address this

limitation, we devise optimizations and heuristics that reduce

the negative effect of additional components.
1) Sharing components: Selecting additional components

for program expressions can significantly increase the search

space for repair, which harms the scalability of the approach.

For instance, if there are 10 program expressions and 10

program variables that we consider as additional components,

then selecting each variable for each expression yields 100

variants to choose a single variable for repairing one of the

expressions. However, proceeding on the assumption that the

program is correct with the exception of a small part, we

do not consider each component for each of the program

expressions. Instead, additional components can be shared by

several expressions. For instance, a variable can be shared by

all the expressions from its scope.
The original CBE does not allow to share components

between several expressions; in the original CBE, each ex-

pression has a fixed interval for allocating components and,

consequently, a fixed set of available components. To alleviate

this limitation, we extend CBE so that components of all

the expressions are allocated in one big interval consisting

of floating subintervals for each expression.
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Fig. 7. Allocating components of the expressions x > y and a + b and
the additional component “−” on the same interval using floating separators.
Cross-expression connections are forbidden.

Allocating component for all the program expressions in

one big interval requires introducing additional constraints to

prevent invalid connections between component of different

expressions. For this, we introduce a set of separator variables
{si} that define subintervals for each expression. Specifically,

all the components of the expression ej and the connections

between them are allowed only within the interval [sj−1, sj).
Fig. 7 shows how the expressions x > y and a + b and the

additional component “−” can be placed using such encoding.

Note that the intervals for each expression are not fixed and

can be extended to add the component “−”. At the same time,

we forbid the connections of the component “−” to cross the

separator between x > y and a + b to prevent our tool from

generating expressions of invalid structure.

Assume that we generate encoding for a set of program

expressions {ei} for i ∈ [1..N ]. The following constraints

ensure that only valid connections are permitted:

φrange
def
=

∧
c∈C

(i,j)=scope(c)
k∈[1..NI (c)]

(si ≤ L(cout) < sj ∧ si ≤ L(cink ) < sj)

∧
∧

i<m<j

⎛
⎝(sm ≤ L(cout) ∧

∧
k∈[1..NI (c)]

sm ≤ L(cink ))

∨ (L(cout) < sm ∧
∧

k∈[1..NI (c)]

L(cink ) < sm)

⎞
⎠

where function scope maps a component c to an interval

representing the range of program expressions where c can be

used for repair. The first line of this formula specifies that each

component is allocated within the intervals of the expressions

from its scope. The second and third lines ensure that for

each separator, the inputs and the output of each component

are all placed either to the right of this separator or to the left,

implying that connections do not cross the borders between

expressions. φcons, φacyc and φconn are defined in an analogous

manner to CBE, taking account of components’ scopes.

Apart from components’ constraints, we enforce the inter-
val consistency constraint φintcons over separator variables to

ensure that the interval for each expression is well-defined:

s0 = 0 ∧ sN = |C| ∧
∧

[(i,j) | i,j∈[0..N ], i<j]

si < sj

where C is the set of all available components.

Test suite
��

Buggy
C program

�� VCC,
Boogie

trace formula �� RC
generator

��

RC (repair condition)

pMaxSMT
solver

model �� Post
processor

��
Repair

Fig. 8. The workflow of DirectFix

2) Typed-based space reduction: If the program to be cor-

rected is statically typed, it is possible to use type information

to reduce the search space for repair. We implement heuristics

for the repair encoding that reduce the number of possible

connections, the number of components and the number of

candidate repair locations. In order to ensure that only well-

typed expression are considered for repair, we modify the

connection constraints so that inputs can be connected only

with outputs of the same type.

Selecting a large number of additional components for

repair yields considerable performance reduction. For this

reason, we group component by their types into several levels:
constants, boolean operators, arithmetical operators, compar-

ison operators and variables. For each level, we generate

and solve a separate repair condition. Grouping additional

components by type allows us to utilize the following two

heuristics. Firstly, we can prune program expression that

cannot be repaired using additional components due to their

type. For example, the statement v = a ∨ b cannot be

repaired using integer arithmetics components. Secondly, we

can reduce the number of connections between components

in the original program expressions. Specifically, we do not

split an expression into subexpressions if these subexpressions

have incompatible type with the additional components and

consider whole expression as one compound component. For

example, the expression a∨x > y can be split into components

a, ∨ and x > y if we consider only boolean operators.

C. Handling Loops

For a loop, we unroll it k times; our trace formula guar-

antees that there is no execution paths requiring more than

k unrolling. The consequence of loop unrolling is that the

trace formula includes multiple instances of the program

expressions that are executed several times inside loops. In

order to make it possible to apply the fix generated by our

tool to the original program, we need to ensure that all these

expressions are modified synchronously. This is achieved by

binding components’ locations of these expression through

auxiliary components called phantom components. Phantom

components do not have semantics and are used only for

binding location variables.

VI. IMPLEMENTATION

We implement the repair methodology described earlier

into a prototype tool, DirectFix. The overall workflow of
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TABLE I
SUBJECT PROGRAMS

Subject LOC #Versions Description

Tcas 135 41 Air traffic control program

Replace 518 30 Text processor

Schedule 304 9 Process scheduler

Schedule2 262 9 Process scheduler

Coreutils 107 – 2909 9 Collection of OS utilities

DirectFix is shown in Fig. 8. To obtain a trace formula from

a buggy program, we use two third-party tools, VCC [15]

and Boogie [18]. VCC translates a C program into a Boogie

program. Subsequently, the Boogie verifier takes as input a

Boogie program, and generates a verification condition – a

formula used to prove the absence of an error. Both VCC and

Boogie can handle pointer arithmetics.

A verification condition generated from Boogie is very

similar to a trace formula we need. The following shows the

verification condition ϕvc of function foo we earlier showed

in Fig. 5(a):

¬((if (x1 > y1) then (y2 = y1 + 1) else (y2 = y1 − 1))

⇒ (result = y2 + 2))

Notice that the trace formula ϕbuggy we showed in Fig. 5(b)

can be obtained by negating ϕvc and replacing ⇒ with ∧.
Due to these subtle differences, ϕbuggy ∧ ψtest is unsatisfiable

as needed, while ϕvc ∧ ψtest is satisfiable. We modified the

Boogie verifier in order to obtain a trace formula instead of

a verification condition. Our trace formula is in SMT-LIB2

format [19] annotated with source code locations.

The trace formula of a buggy program and its test suite

are fed into the RC (repair condition) generator of DirectFix,

which is an implementation of Algorithm 1. Subsequently, the

generated repair condition is fed into our pMaxSMT (Partial

Maximum Satisfiability) solver we implemented on top of

Z3 [14]. Our pMaxSMT implementation is the unsat-core-

guided algorithm of Fu and Malik [20].

Finally, a model (satisfiable assignment) found by our

pMaxSMT solver is post-processed to construct a patch.

Currently, DirectFix shows which expressions are modified

and how they are modified.

VII. EXPERIMENTAL RESULTS

In this section we present the experimental evaluation of

DirectFix. We also compare the repairs generated by DirectFix

with those generated by SemFix [6]. We ran our experiments

on Intel Core i7-2600 CPU with Ubuntu 12.04 64-bit operating

system. Table I shows our subject programs comprised of

eighty nine buggy versions of four subject programs from SIR

(Software-artifact Infrastructure Repository) [21] (the number

of versions for each subject is shown in the #Versions column)

and nine buggy versions of Coreutils reported by Cadar et

al [22]. These subjects are the same as the ones used in

TABLE II
EXPERIMENTAL RESULTS

Subject
Repairs

Total Equivalent (E) Same Loc (S) Diff (D)

Tcas 36 (87%) 19 (54%) 33 (91%) 2.28

Replace 11 (37%) 9 (81%) 10 (91%) 2.54

Schedule 4 (44%) 4 (100%) 4 (100%) 2.5

Schedule2 2 (22%) 1 (50%) 2 (100%) 2

Coreutils 5 (56%) 0 (0%) 3 (60%) 2

Overall 59% 56% 89% 2.26

the SemFix paper [6]. All our subjects come also with their

correct versions, and we compare each of our repairs with its

correct versions, if a repair is found. The timeout used in our

experiments is 106 milliseconds (16 minutes and 40 seconds).

For the subjects larger than Tcas, we designated the sus-

picious functions to reduce the search scope, assuming that

developers have insight about which function might be buggy;

for example, if a test fails after creating or modifying a

function foo, then a bug is probably located in foo or its callees.

For a library function whose source code is not available, we

provided a model for it.

Table II shows the results of our experiments. Overall,

59% of buggy versions are repaired by DirectFix. More

interestingly, 56% of those repairs are equivalent to the code in

the correct versions. We take a repaired version as equivalent

to its correct version when (i) the same program location is

altered by the repair, and (ii) that alternative repair expression

is logically equivalently to the corresponding expression in the

correct version. Note that some expressions (e.g., x > 0 and x
>= 1) are logically equivalent to each other, even though they

are not syntactically identical.

Table II also exhibits that 89% of the repairs suggested

by DirectFix alter the same program locations as those that

differ from the correct versions (Equivalent repairs mentioned

above are included in this category by definition). For example,

DirectFix can suggest a new magic number instead of a buggy

constant used in a buggy version. Although it is difficult to

suggest the “correct” magic number in the absence of formal

specification, the finding that simple replacement of a constant

have all tests passing can be a good hint about where a bug

is and what a repair should be.

As intended, our repairs are simple in most cases. To

measure how simple our repairs are, we compare the original

buggy version and a repaired version, and see how much

they differ. More specifically, we compare the ASTs (Abstract

Syntax Trees) of those two versions, and count (i) the number

of AST nodes that are deleted from the buggy version and

(ii) the number of AST nodes that are added into the repaired

version. For example, if a buggy expression x > y is repaired

into x >= y, then the counted number is two, because operator

> is deleted from the buggy version, and >= is inserted into

the repaired version.
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TABLE III
COMPARISON WITH SEMFIX; E STANDS FOR EQUIVALENT, S STANDS FOR

SAME LOC, D STANDS FOR DIFF, AND R STANDS FOR REGRESSION

Subject Total
DirectFix SemFix

E S D R E S D R

Tcas 30 16 29 2.26 12 3 11 4.1 17

Replace 5 5 5 2.8 0 3 4 10.2 2

Schedule 4 2 4 2.5 1 1 4 8.5 3

Schedule2 2 1 2 2 1 1 2 5 2

Coreutils 4 0 3 2 - 0 0 4 -

Overall 44 53% 95% 2.31 31% 17% 46% 6.36 54%

The Diff column of Table II shows how much original buggy

versions and their repaired versions differ in terms of AST

differences described earlier. Overall, the differences between

two versions are as low as 2.26, which is close to the optimal

number 2 (the optimal number cannot be obtained sometimes

when even the simplest repair requires changes of a few lines

of a program or complicated changes).

The majority (56%) of our repairs are equivalent to ground

truth repairs, and about 90% of our repairs alter the same

program locations as ground truth repairs alter.

a) Quantitative Comparison with SemFix: We compare

our repairs with those of SemFix [6]. Similar to DirectFix,

SemFix also searches for repairs by analyzing the logical

semantics of a program, and uses component-based synthesis

to generate repairs. Further comparison between DirectFix and

SemFix is given in Section IX. The core difference between

SemFix and DirectFix is that DirectFix can search for simple

conservative repairs whereas SemFix does not consider the

simplicity of repairs. Thus, the comparison with SemFix is

a good indicator about how effective our new approach is in

terms of finding simple conservative repairs. We ran SemFix

for the same subjects with the same tests as used for the

DirectFix experiment. We also provided the same information

about suspicious functions, so that only those suspicious func-

tions and their callees can be modified. Table III compares the

repairs that could be generated by both DirectFix and SemFix.

Overall, the rates of equivalent repairs and same-location

repairs are significantly higher in DirectFix than in SemFix

(53% vs 17% and 95% vs 46%, respectively). Also, DirectFix

repairs are simpler (less complex) than SemFix repairs as

shown with Diff numbers (2.31 vs 6.36). We also compare how

frequently regression errors are observed between DirectFix

and SemFix. This is to test our hypothesis that simpler repairs

are more likely to be safer. To observe regression errors, we

apply the entire tests of our SIR subjects to repaired versions.

SIR subjects have a huge number of tests, and we use no

more than 50 tests to generate repairs in our experiments. We

classify that there is a regression error if a repaired version

produces a different output from the correct version in one of

bool Non_Crossing_Biased_Climb() {
in t upward_preferred;
in t upward_crossing_situation ;
bool result ;
upward_preferred = Inhibit_Biased_Climb () > Down_Separation;
i f (upward_preferred)

result = ! (Own_Below_Threat( ) ) | | ( (Own_Below_Threat( ) ) &&
( ! (Down_Separation >= ALIM ( ) ) ) ) ;

else
result = Own_Above_Threat( ) &&

(Cur_Vertical_Sep >= MINSEP) && (Up_Separation >= ALIM ( ) ) ;
return result ;

}

bool Own_Below_Threat( ) {
return (Own_Tracked_Alt <= Other_Tracked_Alt ) ;

}
bool Own_Above_Threat( ) {

return (Other_Tracked_Alt <= Own_Tracked_Alt) ;
}

(a) Snippet of Tcas version 10

bool Own_Below_Threat( ) {
/ * * DirectFix: replaced <= with <. * * /
return (Own_Tracked_Alt < Other_Tracked_Alt)

}

bool Own_Above_Threat( ) {
/ * * DirectFix: replaced <= with <. * * /
return (Other_Tracked_Alt < Own_Tracked_Alt ) ;

}

(b) A DirectFix repair (identical with the ground truth repair)

bool Non_Crossing_Biased_Climb() {
in t upward_preferred;
in t upward_crossing_situation ;
bool result ;
upward_preferred = Inhibit_Biased_Climb () > Down_Separation;
i f (upward_preferred)

result = ! (Own_Below_Threat( ) ) | | ( (Own_Below_Threat( ) ) &&
/ * * SemFix: replaces !(Down_Separation >= ALIM ( ) ) ) with the following. * * /

(!(Other_RAC < Own_Tracked_Alt) ) ) ;
else

result = Own_Above_Threat( ) &&
(Cur_Vertical_Sep >= MINSEP) && (Up_Separation >= ALIM ( ) ) ;

return result ;
}

(c) A SemFix repair

Fig. 9. Comparison of repairs for Tcas version 10

the entire tests. As shown in column R of Table III, regression

errors are observed less frequently in DirectFix repairs than

in SemFix repairs (31% vs 54%). This results coincides with

the high rate of equivalent repairs of DirectFix – equivalent

repairs by definition do not cause a regression error. However,

DirectFix is slower than SemFix. For Tcas, for which we do

not designate suspicious functions, DirectFix took an average

of 3 minutes 20 seconds, while SemFix took an average of

9 seconds. For other benchmarks subjects where only specific

functions are allowed to be modified, we perform repair on the

unit level by reducing programs to only these functions as well

as their dependencies. These reduced programs were given to

both tools for fair comparison, after which both DirectFix and

SemFix took less than a minute.

b) Qualitative Comparison with SemFix: Lastly, we pro-

vide a couple of concrete examples of repairs generated by

DirectFix and SemFix. Fig. 9(b) shows a DirectFix repair

from Tcas (buggy) version 10. Despite that two program

locations are modified, the overall repair is simple; only two

operators are replaced. This repair is identical with the ground
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bool locate (character c , char *pat , in t offset ) {
in t i ; bool flag = false ;
i = offset + pat [ offset ] ;
while ( i > offset )

i f (c == pat [ i ] ) { f lag = true ; i = offset ; }
else i = i − 1;

return flag ;
}

bool omatch(char * l in , in t * i , char *pat , in t j ) {
. . .
i f ( ( l i n [ * i ] != NEWLINE) && ( ! locate ( l i n [ * i ] , pat , j ) ) )
. . .

}

(a) Snippet of Replace version 26

bool omatch(char * l in , in t * i , char *pat , in t j ) {
. . .
/ * * DirectFix: replace parameter j with j+1. * * /
i f ( ( l i n [ * i ] != NEWLINE) && ( ! locate ( l i n [ * i ] , pat , j + 1 ) ) )
. . .

}

(b) A DirectFix repair (identical with the ground truth repair)

bool locate (character c , char *pat , in t offset ) {
in t i ; bool flag = false ;
i = offset + pat [ offset ] ;
while ( i > offset )

/ * * SemFix: replace c == pat[ i ] with i < 6. * * /
i f ( i < 6) { flag = true ; i = offset ; }
else i = i − 1;

return flag ;
}

(c) A SemFix repair

Fig. 10. Comparison on repairs for Replace version 26

truth repair. Meanwhile, Fig. 10 shows two different repairs

from DirectFix and SemFix for Replace (buggy) version 26.

DirectFix successfully found the simple ground truth repair;

it replaces a function parameter j with j+1 of function locate.
Meanwhile, SemFix repaired function locate itself by changing

an if-guard c==pat[i] to i<6. Although the repair is valid for

the given test suite, this destructive repair causes a regression.

As compared with SemFix, DirectFix repairs are simpler,

more frequently identical with the ground truth repairs, and

less frequently cause a regression error.

VIII. THREATS TO VALIDITY

Our subject programs mostly require small changes for

repair. While software mining research shows that small fixes

are abundant in the field [4], [23], some fixes inevitably

require more sizable changes. In such situations, time would

be exhausted before DirectFix can find a repair. Our subject

programs do not represent such scenario.
In our experiments, we assumed that developers have insight

about which function might be buggy. If an incorrect function

is designated as buggy, DirectFix cannot generate the the

ground truth repair. Our conjecture is that our repair method is

better suited for fine-tuning a program and looking for a small

fix, whereas search-based methods such as GenProg have

advantage in their scalability. Combining these two contrasting

methods seems possible; for example, after a search-based

method aggressively narrows down the search space, DirectFix

should be able to find the smallest patch in that reduced search

space at a subsequent phase.

IX. RELATED WORK

A large volume of research has been conducted on au-

tomatic program repair. A number of them repair specific

defect types [24]–[30], while DirectFix is designed to be a

general purpose program repair tool. Unlike specifications-

based methods [31]–[36], DirectFix falls into the category

of the test-driven method whose goal is to find a patch that

makes all tests in the given test suite pass. GenProg [5] and

JAFF [37] use genetic programming (GP) to search for a patch.

Using GP, statements can be deleted or moved. The fitness

function of GP guides such mutations towards a patch. It was

empirically shown that this approach scales to large programs

such as PHP [12]. However, it often generates nonsensical

patches, as pointed out in [7], due to its inherent nature of

random mutation. To alleviate this problem, MUT-APR [38]

mutates only pre-selected binary operators thereby restricting

the defect types it can handle, and PAR [7] uses fix templates

mined from actual human patches, instead of GP.

Meanwhile, SemFix [6] synthesizes a patch by semantic

program analysis via dynamic symbolic execution, instead

of performing syntactic search. Similar to DirectFix, Sem-

Fix also synthesizes a patch at the expression level by us-

ing component-based program synthesis [13]. More recently,

Nopol [39] also took this semantic approach to fix control-

related bugs (e.g., buggy if conditions). AutoFix [40] exploits

contracts such as pre/post-conditions to generate random tests,

localize faults, and generate a repair.

In all existing repair methods, fault localization is performed

upfront before looking for a patch. We in contrast combine

fault localization and repair generation, and as a result obtain

the unique capability to take into account the simplicity

of a patch. For this purpose, we exploit partial MaxSMT

(pMaxSMT). Similarly, BugAssist [16] exploits pMaxSAT for

fault localization. However, unlike in DirectFix, pMaxSAT is

not used for repair synthesis – BugAssist does not fuse fault

localization and repair generation.

X. CONCLUSION

In this paper, we have proposed DirectFix as a method that

generates the simplest repair, following the thesis that small

patches are easier to inspect and introduce less regressions

(hence safer). DirectFix is a semantic analysis based repair

method which differs from all existing repair methods in its

integration of fault localization with repair generation. We

have shown how those two phases can be integrated based

on partial MaxSMT and component-based program synthesis.

Patches produced by DirectFix are found to be simpler and

safer than those produced by SemFix, the state-of-the-art

semantic analysis based repair method.
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