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ABSTRACT

In this work, we present a novel approach that connects two closely-
related topics: fuzzing and automated program repair (APR). The
paper is divided into two parts. In the first part, we describe the
similarities between fuzzing and APR both of which can be viewed
as a search problem. In the second part, we introduce a new patch-
scheduling algorithm called Casino, which is designed from a
fuzzing perspective to enhance search efficiency. Our experiments
demonstrate that Casino outperforms existing algorithms. We also
promote open science by sharing SimAPR, a simulation tool that
can be used to evaluate new patch-scheduling algorithms.
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1 INTRODUCTION

Software maintenance involves a continuous cycle of bug detection
and fixing, which can be viewed as the yin and yang of software
development. When a bug is detected, it represents the negative yin
aspect, while bug-fixing activities represent the positive yang as-
pect of software maintenance. This cycle is essential for improving
software quality, ensuring that software remains reliable.
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As software quality becomes increasingly more important, re-
search on bug finding and fixing is gaining momentum. Fuzzing
has emerged as a popular and effective bug-finding technique and
has been extensively studied recently. OSS-Fuzz [10] – a fuzzer
developed at Google – alone has detected 8,900 vulnerabilities and
28,000 bugs as of February 2023. Fuzzing is now a routine practice
at prominent vendors such as Google [3] and Microsoft [19].

As the bug detection capability improves, it is becoming unsus-
tainable to fix all of the bugs manually. This is where automated pro-
gram repair (APR) comes in. Since the seminal APR tool, GenProg,
was introduced in 2009 [59], APR has been actively researched for
the last decade or so. Using the current APR techniques, many bugs,
if not all, can now be fixed automatically.

Fuzzing and APR, although seemingly opposite, share many
similarities as they both solve a search problem. Fuzzing searches for
bugs, while APR searches for patches to fix those bugs. In practical
terms, the objective of fuzzing is to gather as many bugs as possible
within a set timeframe. Similarly, APR can be leveraged to gather as
many valid patches (i.e., patches passing all tests) as possible within
a given time budget. In this paper, we will assume an APR approach
that includes a patch ranking step where valid patches collected are
ranked before being presented to the user. This approach is in line
with recent works [11, 12, 16, 17, 27, 44, 61, 63, 72]. In the first part
of this paper, we will describe in more detail the relationship between
fuzzing and APR.

In the second part of this paper, we introduce a new patch-scheduling
algorithm, which schedules the order of patches to be validated. The
patch space is often too large to be checked exhaustively and this
is why an efficient patch-scheduling algorithm is needed. Our ap-
proach is inspired by the principles of fuzzing, and we view the
patch-scheduling problem through this lens. Specifically, we for-
mulate the patch space as a tree, which we explore using stochastic
tree traversal. The resultant algorithm, named Casino, is similar to
the input-scheduling algorithm of grammar-aware mutation-based
fuzzing. To facilitate efficient search, we employmulti-armed bandit
algorithms to explore the structured patch space.

To assess the performance of our patch-scheduling algorithm,
Casino, we compare it with the original scheduling algorithms
implemented in six existing APR tools, including TBar [32] and Al-
phaRepair [63], the best-performing template-based and learning-
based tool, respectively, at the time of writing. Additionally, we
compare Casino with the state-of-the-art algorithm, SeAPR [7].

When assessedwith the 395 buggy versions of theDefects4J [23]
benchmark,Casino outperforms the original scheduling algorithms
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across all six subject APR tools. When compared with SeAPR,
Casino outperforms it in the majority of cases (4 out of 6 tools),
while there is no clear winner between them in the remaining two.
The high search efficiency of Casino also leads to high recall, en-
abling it to fix the largest number of bugs among all considered
algorithms when given the same time budget.

In summary, we make the following contributions in this work:
(1) New research directions.We provide a new perspective on

the relationship between fuzzing and APR and suggest new
avenues for research.

(2) Efficient algorithm. We present Casino, a novel efficient
patch-scheduling algorithm designed from a fuzzing perspec-
tive. Our experimental results show that Casino outperforms
existing algorithms in terms of overall performance.

(3) Experimental tool. Finally, we share SimAPR, the simula-
tion tool used in our experiments to evaluate various patch-
scheduling algorithms. With SimAPR, assessing new patch-
scheduling algorithms is made easy. SimAPR, along with the
replication scripts, are available at:

https://github.com/UNIST-LOFT/SimAPR

2 COMPARISON BETWEEN FUZZING AND

AUTOMATED PROGRAM REPAIR

Both fuzzing and automated program repair (APR) have been in-
tensively studied in the past decade [42, 75]. At a high level, these
two techniques are similar in that they both solve search problems.
Fuzzing searches for inputs that reveal bugs, such as crashes, while
APR searches for valid patches that pass all available tests. Both
problems are challenging due to the vastness of their search spaces.
The search space of fuzzing includes all possible inputs to the pro-
gram under test, while the search space of APR is the space of all
possible patches. Since it is impractical to exhaustively navigate
these huge search spaces, both fuzzing and APR conduct a search
in the subset of the search space. The efficiency of finding bugs
or patches depends on the scheduling algorithm employed, which
selects the input or patch to explore in the next run. The following
two subsections briefly describe the scheduling algorithms used in
fuzzing and APR, respectively.

2.1 Fuzzing Scheduling Algorithms

Most fuzzers use stochastic scheduling algorithms that prioritize
inputs that are more likely to expose bugs. To estimate the bug-
revealing likelihood of an input, the program’s past execution data
is often analyzed. Black-box fuzzers prioritize inputs similar to
those that previously uncovered bugs. Grey-box fuzzers extract
more information from the execution data, such as code cover-
age, and use it to guide the search. The scheduling algorithms of
fuzzing are typically online algorithms, meaning that the decision
on which input to explore next is decided based on the execution
data collected thus far. For more detailed and summarized descrip-
tions of fuzzing scheduling algorithms, please refer to recent survey
papers [37, 75].

Table 1: Comparison between fuzzing and APR (see § 2)

Fuzzing APR
Search space Inputs Patches
Search target Bug-revealing inputs Valid patches†

Oracle Bug oracle (e.g., sanitizers) Test suite
Schedule Mostly stochastic Mostly deterministic

† : A valid patch is also called a plausible patch in the literature of APR.

2.2 APR Scheduling Algorithms

Before initiating a patch scheduling algorithm, APR tools first
run a fault localization technique to identify suspicious locations
to modify. To limit the search space, most APR tools modify only a
single program location, which we in this paper call 𝐴𝑃𝑅𝑆𝐿 . Once
the suspicious locations are identified, APR tools iterate over them
from the most suspicious to the least suspicious. For each suspi-
cious location, patches are generated using various techniques.
Template-based techniques such as TBar [32] apply to the sus-
picious location predefined templates applicable at that location,
while learning-based techniques such as AlphaRepair [63] use
pre-trained machine learning models to generate patches at the
suspicious program location. The generated patches are then vali-
dated using the given test suite. The above process is repeated to
find valid patches (a.k.a., plausible patches) that pass all available
tests.

Patch-scheduling algorithms typically employ one of two termi-
nation policies. The first policy is to halt the search once a valid
patch is discovered, while the second policy, similar to fuzzing,
is to continue searching for valid patches within a specified time
limit. When the second policy is used, the discovered valid patches
are ranked using a ranking method before being presented to the
user. While the first policy was commonly used in the past, many
recent APR tools [11, 12, 16, 17, 27, 44, 61, 63, 72] use the second
policy because it can help alleviate the problem of the first-found
valid patch being incorrect, even though it passes all tests. In this
work, we focus on the recent APR approach that uses the second
termination policy.

Notice that contrary to fuzzing, most 𝐴𝑃𝑅𝑆𝐿 tools use deter-
ministic scheduling algorithms. The scheduling order of patches is
determined before the search starts based on the fault localization
results, and the order is not changed during the search.

2.3 Research Opportunities

Table 1 summarizes the similarities and differences between fuzzing
and APR discussed earlier. While these two techniques share simi-
larities at a high level, they also exhibit distinct differences at a more
granular level. This creates new avenues for research, including the
following:

(1) Fuzzing efficiency has significantly improved recently, while
most APR tools still rely on basic scheduling algorithms. Exploring
the adaptation of techniques used to enhance fuzzing efficiency to
APR could be a promising avenue for future research.
(2) The “grey-box” approach is proven to be highly effective in
fuzzing, yet most APR tools still rely on either the “black-box”

https://github.com/UNIST-LOFT/SimAPR
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or “white-box” approach. The white-box approach is utilized by
the semantic-based approach [40, 43]. Exploring the integration
of the grey-box approach into APR presents a promising research
direction.
(3) Technology transfer can occur in both directions between fuzzing
and APR. For instance, deep learning (DL) has been utilized in both
fuzzing and APR, albeit in different ways. This presents numerous
opportunities to combine and integrate diverse ideas.

In this work, we focus on the first item and propose a new
efficient patch-scheduling algorithm.

3 FUZZING-INSPIRED PATCH SCHEDULING

In 𝐴𝑃𝑅𝑆𝐿 , designing an efficient patch-scheduling algorithm boils
down to the following questions: how to select a location to modify
and how to mutate the chosen location?

How can a fuzzing perspective help us design a more efficient
APR algorithm? Our key observation is that the patch space of𝐴𝑃𝑅𝑆𝐿
has a hierarchical tree structure. Consider the tree shown in
Figure 1 – ignore the legend and s-score𝑖 ; they will be described
later in § 3.1. The terminal nodes represent patches in the patch
space. For each terminal node, say 𝜎★, we have a path 𝜋 : 𝑟 → 𝑓★→
𝑚★ → 𝑙★ → 𝑡★ → 𝑖★ → 𝜎★ where 𝑟 represents the root node of
the tree. In 𝜋 , all non-terminal nodes between 𝑟 and 𝜎★ represent
the structural component of patch 𝜎★ such as file 𝑓★ and method
𝑚★. Applying patch 𝜎★ is equivalent to traversing down 𝜋 : (1)
identifying the file 𝑓★, (2) locating the method𝑚★, (3) zooming into
the location 𝑙★, (4) using the template 𝑡★, and (5) finally choosing
one of the patches obtainable by applying 𝑡★.

Now that we reformulate the patch space as a tree, we can explore
the patch space via tree traversal, similar to grammar-based fuzzing.
In grammar-based fuzzers like Langfuzz [20] and Superion [56],
input space is formulated as an AST (abstract syntax tree) using the
user-given input grammar. Then, these fuzzers perform mutation
by randomly selecting a subtree of the AST and replacing it with
another subtree extracted from other inputs in the seed pool.

Taking the perspective of fuzzing, we conceive the idea of trans-
ferring grammar-based fuzzing to APR. In this section, we formally
define our structured patch space (§ 3.1) and present an overall
idea about how to navigate the patch space in a structured manner
(§ 3.2), which will be used as a backbone of our patch-scheduling
algorithm. Our patch-scheduling algorithm is stochastic just like in
fuzzing, which poses the traditional trade-off between exploration
and exploitation. We resolve this trade-off via multi-armed bandit
(MAB) algorithms, again inspired by fuzzing [57, 73]. We describe
our patch-scheduling algorithm in § 3.4 after introducing in § 3.3
the two MAB algorithms we use. Lastly, we show how we incre-
mentally construct the patch space on the fly while performing
patch scheduling (§ 3.5). We call our patch-scheduling algorithm
Casino.1

3.1 Structured Patch Space

Before we formally define the patch space used by Casino, we first
define a patch configuration, a basic element of our patch space.

1Slot machines are colloquially called one-armed bandits.

Figure 1: Patch-Space Tree (§ 3.1.1) and Lists (§ 3.1.2)

Definition 1 (Patch Configuration 𝜎). A patch configuration is
a record 𝜎 = ⟨𝑓 : file,𝑚 : method, 𝑙 : loc, 𝑡 : tmplt, 𝑖 : idx, 𝑐 : cvr⟩
where its attributes denote the following.
• 𝑓 : the file 𝜎 modifies.
• 𝑚: the method 𝜎 modifies;𝑚 is defined in file 𝑓 .
• 𝑙 : the location 𝜎 modifies; 𝑙 belongs to method𝑚.
• 𝑡 : the template 𝜎 uses.
• 𝑖: the index of 𝜎 among the 𝑡-using patch instances at 𝑙 .
• 𝑐: true if the patch was already covered; otherwise false.
The last field cvr is used to mark patches that are covered (selected)
during the APR campaign. Initially, the cvr value is false for all
patch configurations. We omit the cvr attribute from 𝜎 when we
are not concerned with its value.
Notation. We use the notation 𝜎.𝑎 to access the attribute 𝑎 of 𝜎 .

Terminology. Since any patch of an arbitrary 𝐴𝑃𝑅𝑆𝐿 tool can
be expressed as a patch configuration, we use patch and patch
configuration interchangeably.

Definition 2 (Patch Space SJ𝜏K). The patch space of 𝜏 , denoted
with SJ𝜏K where 𝜏 is an 𝐴𝑃𝑅𝑆𝐿 tool, is defined as a set of patch
configurations of 𝜏 .

We use two kinds of structures to represent the patch space: tree
(§ 3.1.1) and list (§ 3.1.2).

3.1.1 Tree Structure. As mentioned, we view the patch space as a
tree, as formally defined in the following:

Definition 3 (Patch-Space Tree T J𝜏K). Given a patch space SJ𝜏K,
we reformulate it to a patch-space tree T J𝜏K. We first define the
nodes of T J𝜏K and subsequently, the edges of T J𝜏K. To define nodes,
we use the level function that takes as input the level of T J𝜏K and
returns a set of nodes constituting that level:
• level(0) = {the root node 𝑟 }
• level(1) = {𝑓 | ∃𝜎 ∈ SJ𝜏K : 𝜎.file = 𝑓 }
• level(2) = {𝑚 | ∃𝜎 ∈ SJ𝜏K : 𝜎.method =𝑚}
• level(3) = {𝑙 | ∃𝜎 ∈ SJ𝜏K : 𝜎.loc = 𝑙}
• level(4) = {𝑡J𝑙K | ∃𝜎 ∈ SJ𝜏K : 𝜎.loc = 𝑙 ∧ 𝜎.tmplt = 𝑡}
• level(5) ={𝑡J𝑙K[i]| ∃𝜎 ∈SJ𝜏K : 𝜎.loc=𝑙∧𝜎.tmplt=𝑡∧𝜎.idx=𝑖}
• level(6) = {𝜎 | 𝜎 ∈ SJ𝜏K}
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At level 4, 𝑡J𝑙K represents a template 𝑡 applied at location 𝑙 . At level 5,
𝑡J𝑙K[𝑖] represents an index of 𝜎 among the 𝑡J𝑙K-using patches. Con-
necting an edge between nodes is straightforward. Given a patch
configuration 𝜎 = ⟨𝑓 ,𝑚, 𝑙, 𝑡, 𝑖⟩ ∈ SJ𝜏K and the root node 𝑟 , we con-
struct a path 𝑟 → 𝑓 →𝑚 → 𝑙 → 𝑡J𝑙K→ 𝑡J𝑙K[𝑖] → 𝜎 in T J𝜏K. We
denote this path with 𝜋 (𝜎).

Notation. To represent the subtree rooted from a component 𝑐 of
a patch configuration 𝜎 , we write T J𝜏K(𝑐). For example, in Figure 1,
the left-most subtree is denoted with T J𝜏K(𝑚1).
Notation. We will omit 𝜏 in SJ𝜏K and T J𝜏K when we are not
concerned about which APR tool 𝜏 is used.

3.1.2 List Structure. Given a subtree T (𝑐) and the patches 𝜎 ∈
T (𝑐), wemaintain a hierarchy of groups. See Figure 1where subtree
T (𝑚1) is transformed into the hierarchy of three groups. Each
group consists of the patches having the same suspicious score
(denoted with s-score) obtained through fault localization. In most
APR, s-score is computed at the location level and we assume that
s-score(𝜎) = s-score(𝑙); that is, the s-score computed for 𝑙
represents the s-score of 𝜎 . Now, we define a patch-space list.

Definition 4 (Patch-Space List L). Given a patch-space subtree
T (𝑐) rooted from component 𝑐 , it holds that T (𝑐) = ⊎

L𝑖 (𝑐) where
⊎ is the disjoint-union operator and L𝑖 (𝑐) satisfies the following:
(1) ∀𝑖 : {𝜎 | 𝜎 ∈ L𝑖 (𝑐)} ⊆ {𝜎 | 𝜎 ∈ T (𝑐)}
(2) ∃𝑛 :

⋃
1≤𝑖≤𝑛{𝜎 | 𝜎 ∈ L𝑖 (𝑐)} = {𝜎 | 𝜎 ∈ T (𝑐)}

(3) ∀𝑖, 𝑗 : 𝑖 ≠ 𝑗 ⇒ L𝑖 (𝑐) ∩ L𝑗 (𝑐) = ∅
(4) ∀𝜎1, 𝜎2 ∈ L(𝑐) : s-score(𝜎1) = s-score(𝜎2).
(5) ∀𝑖, 𝑗 : 𝑖 ≠ 𝑗 ⇒ s-score(L𝑖 (𝑐)) ≠ s-score(L𝑗 (𝑐)) where
s-score(L𝑖 (𝑐)) represents the s-score of 𝜎 ∈ L𝑖 (𝑐).

In Figure 1, T (𝑚1) = L1 (𝑚1) ⊎L2 (𝑚1) ⊎L3 (𝑚1) where L𝑖 (𝑚1)
consists of the patches 𝜎 ∈ T (𝑚1) having s-score𝑖 . The reason we
call L𝑖 a list, not a group, will be clear in Definition 7. We will omit
𝑐 in L(𝑐) when the current component 𝑐 is clear from the context.

Notice in Figure 1 that s-score1 > s-score2 > s-score3. We
order patch-space lists based on their s-score.

Definition 5 (Ordering between Patch-Space Lists). Given two
patch-space lists L1 and L2 belonging to the same patch-space
subtree, we write L1 ⊐ L2 iff s-score(L1) > s-score(L2).

While scheduling a patch, we want to avoid selecting a patch
that was already selected (i.e., covered) before. For example, in Fig-
ure 1, we do not want to select a patch in the s-score1-group if all
patches in that group were already covered. If there exists an un-
covered patch in the s-score1-group, Casino skips the s-score1-
group and considers the s-score2-group. In this case, we call the
s-score2-group the MSU (most suspicious uncovered) list.

Definition 6 (The Most Suspicious Uncovered (MSU) List). The
MSU list denoted with L𝑀𝑆𝑈 satisfies the following constraints.
(1) ∀𝑖 : L𝑖 ⊐ L𝑀𝑆𝑈 ⇒ ∀𝜎 ∈ L𝑖 : 𝜎.cvr = true
(2) ∃𝜎 ∈ L𝑀𝑆𝑈 : 𝜎.cvr = false

As mentioned, all patches in a patch-space list have the same
s-score. Inmost APR tools, patches are scheduled in a fixed specific
order, even among those having the same s-score. Considering
this, we order the patches in the same patch-space list.

Definition 7 (Ordering between Patches). Consider the patch
space SJ𝜏K of an APR tool 𝜏 . Given two patches 𝜎1, 𝜎2 ∈ SJ𝜏K, we
write 𝜎1 ⊐ 𝜎2 when the original scheduling algorithm of 𝜏 validates
𝜎1 before 𝜎2. We preserve this original ordering between patches in
each patch-space list L. That is, ∀𝑖, 𝑗 : 𝑖 > 𝑗 ⇒ LJ𝑖K ⊐ LJ 𝑗K where
LJ𝑖K and LJ 𝑗K denote the 𝑖-th and 𝑗-th patch of L, respectively.

Notation. For simplicity, we will often use the words tree and list
to refer to the patch-space tree and patch-space list.

3.2 Structured Navigation: Overview

To navigate the patch space, we use both the patch-space tree and
patch-space list, taking the following four steps.
Step 1) Vertical Navigation.We first start with walking down the
tree from the root. At each node of the tree, an edge to traverse is
randomly chosen. We call this process vertical navigation. Vertical
navigation can stop at any level 𝑙 of the tree where 𝑙 ≥ 4 (i.e.,
traversal cannot occur below the template level). Once vertical
navigation stops at node 𝑛, the search space is narrowed down to
T (𝑛).
Step 2) Extracting the MSU List. Subsequently, we extract the
MSU list of T (𝑛). This step further narrows down the scope of the
search space into the extracted MSU list, L𝑀𝑆𝑈 .
Step 3) Horizontal Navigation. We randomly select the next
patch among L𝑀𝑆𝑈 . We call this process horizontal navigation.
Step 4) Updating the Patch Space Once a chosen patch 𝜎 is
validated, we set 𝜎.cvr to true to remove 𝜎 from the patch space.

3.3 Intermezzo: Multi-Armed Bandit

To efficiently explore the patch space, Casino uses two MAB (multi-
armed-bandit) algorithms described in this section.

3.3.1 𝜖-Greedy Algorithm. The 𝜖-greedy algorithm [52] chooses
an arm at time 𝑡 in the following way:
• choose an arm uniformly at random with probability 𝜖
• choose the arm that yielded the highest profit in the past (i.e.,
until time 𝑡 − 1) with probability 1 − 𝜖 .

3.3.2 Thompson Sampling Algorithm. Casino uses the Thompson
sampling algorithm [49, 54] for the Bernoulli bandit problem, where
the reward for an arm is either 1 (success) or 0 (failure). In the
Bernoulli bandit problem, each arm 𝑘 produces a reward of one
with probability \𝑘 and a reward of zero with probability 1 − \𝑘 .
While \𝑘 is unknown to the agent, the agent can learn about it
through experimentation using a Bayesian approach. Suppose at
time 𝑡 , a prior distribution of 𝑓 (\𝑘 ) is defined as a two-parameter
Beta distribution 𝐵𝑒𝑡𝑎(𝛼𝑘 , 𝛽𝑘 ) where 𝛼𝑘 , 𝛽𝑘 > 0.

The useful property of the Beta distribution is that the posterior
distribution after observing a reward (either 1 or 0) is again a Beta
distribution where 𝛼𝑘 and 𝛽𝑘 are updated as follows:

(𝛼𝑘 , 𝛽𝑘 ) :=
{
(𝛼𝑘 + 1, 𝛽𝑘 ) if success is observed
(𝛼𝑘 , 𝛽𝑘 + 1) if failure is observed

At time 𝑡 , having observed 𝑛 successes and𝑚 failures from arm
𝑘 , the posterior distribution of 𝑘 is 𝐵𝑒𝑡𝑎(1 + 𝑛, 1 +𝑚). See Figure 2
shows examples of Beta distributions with different parameters.
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Figure 2: Examples of Beta distributions

Thompson sampling for the Bernoulli bandit problem repeats the
following three steps at each time step 𝑡 .
(1) Sampling: For each arm 𝑘 , success probability estimate \𝑘 is
randomly drawn from 𝐵𝑒𝑡𝑎(𝛼𝑘 , 𝛽𝑘 ).
(2) Selection: The algorithm selects the arm for which the largest
success probability estimate is sampled. After playing the chosen
arm 𝑥𝑡 , its reward 𝑟𝑡 is observed.
(3) Update: Based on the observation 𝑟𝑡 , the Beta distribution is
updated accordingly.

3.4 Patch Scheduling via Multi-Armed Bandit

3.4.1 Labeled Patch-Space Tree. To explore the patch-space tree T
stochastically, we extend T by labeling edges 𝑒𝑘 with Beta distri-
butions 𝐵𝑒𝑡𝑎(𝛼𝑘 , 𝛽𝑘 ). Hereafter, the patch-space tree and T refer
to the labeled patch-space tree.

3.4.2 Vertical Navigation via Thompson Sampling. At each level
of T , we choose an edge randomly using Thompson sampling
(§ 3.3.2). The edge labeled with a Beta distribution skewed more to
the left is more likely to be selected. Conversely, when we observe
evidence to believe that a certain edge should be more prioritized
than before, we further skew the Beta distribution of that edge to
the left by increasing the 𝛼 value of the distribution. More details
will be described in § 3.4.6.

3.4.3 Initial Edge Label ⊥. Before starting an APR campaign, we
have no runtime information to believe that one edge 𝑒1 looks more
profitable than another edge 𝑒2 existing at the same level of the
tree. Thus, we initialize all edge labels of T with a special value, ⊥.
When performing Thompson sampling, the edges 𝑒 labeled with ⊥
are ignored and not selected. We say that those edges 𝑒 are disabled.
We will describe in § 3.4.5 when an edge is enabled.

3.4.4 Horizontal Navigation via 𝜖-Greedy Algorithm. Since all edges
are disabled in the beginning, vertical navigation over T J𝜏K im-
mediately stops at the root node 𝑟 of T J𝜏K and returns subtree
T J𝜏K(𝑟 ). As described in § 3.2, horizontal navigation is performed
over the MSU list of T J𝜏K(𝑟 ). Since subtree T J𝜏K(𝑟 ) refers to T
and no patch is covered yet, the MSU list of T J𝜏K(𝑟 ) is the list
consisting of the patches having the highest s-score.

Given the MSU list L𝑀𝑆𝑈 , which item in it should we select as
the next patch to validate? On the one hand, it seems we should
use random selection since all patches in the list have the same
s-score. On the other hand, it also seems reasonable to select
the left-most uncovered item of L𝑀𝑆𝑈 as done in most APR tools.
Many APR tools distinguish the ordering between the patches
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Figure 3: Horizontal Navigation via 𝜖-Greedy Algorithm. In

(a) and (b), a thicker arrow means a higher probability. 𝐸 [𝑇 ]𝐸 [𝑇 ]𝐸 [𝑇 ]
𝑅𝑅𝑅 are defined in § 3.4.4 with signpost “𝐸 [𝑇 ]𝐸 [𝑇 ]𝐸 [𝑇 ] and 𝑅𝑅𝑅”.

having the same s-score by using additional information. For
example, learning-based tools use the patch likelihood returned
from a trained model [63, 74].

Reconciling both factors, we use an 𝜖-greedy algorithm to per-
form horizontal navigation. Consider Figure 3(a). Our algorithm
allows both (1) random selection and (2) the selection of the LMU
(left-most uncovered) patch, 𝜎𝐿𝑀𝑈 . The former is selected with the
probability of 𝜖 and the latter with 1− 𝜖 . It can be viewed that with
the probability of 𝜖 , we prioritize “exploration”, whereas with the
probability of 1 − 𝜖 , we “exploit” the pre-defined patch ordering
imposed by the APR tool. After discovering an “interesting” patch
(seeDefinition 8) as a result of exploration, our scheduling algorithm
prioritizes its similar patches, just as a fuzzer prioritizes inputs
similar to interesting seeds.

𝐸 [𝑇 ]𝐸 [𝑇 ]𝐸 [𝑇 ] and 𝑅𝑅𝑅. When performing horizontal navigation using an 𝜖-
greedy algorithm, the balance between exploitation and exploration
is controlled using the value of 𝜖 . To define 𝜖 , we consider the
following. Let𝑇 be the number of trials until𝜎𝐿𝑀𝑈 is selected. Then,
the expected value 𝐸 [𝑇 ] is ∑𝑅

𝑘=1 𝜖
𝑘−1 × 𝑅−𝑘+1

𝑅
× (1 − 𝜖 + 𝜖

𝑅−𝑘+1 )
where 𝑅 = |{𝜎 | 𝑖𝑑𝑥 (𝜎) ≥ 𝑖𝑑𝑥 (𝜎𝐿𝑀𝑈 )}| and 𝑖𝑑𝑥 denotes a function
that returns the index of the given element of L𝑀𝑆𝑈 .2 Notice that
𝑅 represents the size of the sublist of L𝑀𝑆𝑈 ranging from 𝜎𝐿𝑀𝑈

to the last item of L𝑀𝑆𝑈 . The plot of 𝐸 [𝑇 ] is shown in Figure 3(c).
𝐸 [𝑇 ] increases exponentially as 𝜖 increases. Also, the plot grows
more rapidly when the value of 𝑅 is larger.

The value of 𝜖 should not be too large or too small. Suppose
𝜎𝐿𝑀𝑈 is valid (i.e., passes all tests), and thus the original scheduling
algorithm detects a valid patch 𝜎𝐿𝑀𝑈 in the next scheduling itera-
tion. In comparison, our algorithm would detect the same 𝜎𝐿𝑀𝑈 in
𝐸 [𝑇 ] iterations on average, incurring the additional average cost of
𝐸 [𝑇 ] − 1. Thus, if 𝐸 [𝑇 ] is too large, the cost is likely to surpass the

2§ A.1 of the supplementary appendix describes how we derive this formula of 𝐸 [𝑇 ].
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gain. Conversely, if 𝐸 [𝑇 ] is too small, exploration would not occur
frequently enough to obtain gains.

Unlike the conventional 𝜖-greedy algorithm, we do not use a
single constant for 𝜖 . This is because as𝑅 decreases (i.e., the position
of 𝜎𝐿𝑀𝑈 moves to the right in L𝑀𝑆𝑈 ; see Figure 3(b)), 𝐸 [𝑇 ], the
expected cost of the random search, also decreases (see Figure 3(c)),
and thus we can afford a larger 𝜖 value. We define 𝜖 as the sigmoid
function (see Figure 3(d)) defined in Equation (1). Notice that as 𝑅
decreases, i.e., |L𝑀𝑆𝑈 | − 𝑅 increases, 𝜖 increases as desired.

𝜖 (𝑥) = 1

1 + 𝑒
𝑐1

|L𝑀𝑆𝑈 |
· (𝑐2 · |L𝑀𝑆𝑈 |−𝑥 )

(1)

In Equation (1), constants 𝑐1 and 𝑐2 are set to 10 and 1/3, respectively,
to form a balanced S shape.3

3.4.5 Enabling Edges. As mentioned in § 3.4.3, all edges of T are
disabled initially. We enable an edge when we detect an interesting
patch defined as follows:

Definition 8 (Interesting Patch). A patch 𝜎 is considered interest-
ing when the program 𝑝 patched with 𝜎 passes one of the negative
tests (i.e., the test 𝑝 previously failed).

Consider Figure 1 as an example. Given a detected interesting
patch 𝜎★, we identify 𝜋 (𝜎★) = 𝑟 → 𝑓★ → 𝑚★ → 𝑙★ → 𝑡★J𝑙★K →
𝑡★J𝑙★K[𝑖★] → 𝜎★.4 Then, we assign a Beta distribution 𝐵𝑒𝑡𝑎(3, 2) to
the red-colored edges of 𝜋 (𝜎★). We assign 𝐵𝑒𝑡𝑎(3, 2) not 𝐵𝑒𝑡𝑎(2, 2)
to reflect the fact that an interesting patch is found in path 𝜋 (𝜎★).
Recall that we increase the 𝛼 value of the Best distribution to give
a higher priority than before. The edges below the template level
remain disabled to enforce the horizontal navigation below the
template level.

Just as a fuzzer prioritizes inputs similar to interesting seeds, our
patch-scheduling algorithm prioritizes patches similar to detected
interesting patches 𝜎★. To allow selecting edges deviating from
𝜋 (𝜎★), we define the neighboring edge as follows.

Definition 9 (Neighboring Edge and Node of 𝜎★). Given an inter-
esting patch 𝜎★, its neighboring edge 𝑒 is defined as follows:

𝑒 ∈ {𝑒 | 𝑛 ∈ 𝜋 (𝜎★) ∧ 𝑒 is an outgoing edge of 𝑛 ∧ 𝑒 ∉ 𝜋 (𝜎★)}
where 𝑛 is a node in path 𝜋 (𝜎★). When a node is visited via a
neighboring edge, we call that node a neighboring node.

In Figure 1, blue-colored edges are neighboring edges of 𝜋 (𝜎★).
We label the neighboring edges of 𝜋 (𝜎★) with 𝐵𝑒𝑡𝑎(2, 2) shown
in Figure 2(a). As a result, in our running example, the vertical
navigation can visit neighboring nodes like 𝑚1 and 𝑙2. Once an
edge is enabled, we do not disable it afterward.

3.4.6 Updating Edge Labels. As explained § 3.4.5, a disabled edge
is enabled when an interesting patch 𝜎★ is detected. What if some
edges in 𝜋 (𝜎★) are already enabled? Given an edge 𝑒 ∈ 𝜋 (𝜎★) la-
beled with 𝐵𝑒𝑡𝑎(𝛼, 𝛽), we update the label of 𝑒 to 𝐵𝑒𝑡𝑎(𝛼 + 𝑛, 𝛽)
where 𝑛 > 0. The resultant Beta distribution is skewed more to the
left than before, increasing the chance to be selected when perform-
ing vertical navigation. We increase the 𝛼 value exponentially (i.e.,
3§ A.2 in the supplementary appendix shows the shapes of the 𝜖 function when
different values are used.
4In Figure 1, we simply write 𝑡★ and 𝑖★ to represent 𝑡★J𝑙★K and 𝑡★J𝑙★K[𝑖★],
respectively.

Algorithm 1 Casino Patch Scheduling Algorithm
Input: 𝑃 : Program to be repaired
Input: Initial patch-space tree T
Input: 𝑂fix: Fix oracle (e.g., a test-suite)
Output: Dpatches
1: Dpatches ← ∅ // Dpatches: Set of detected patches
2: while 𝑡elapsed < 𝑡limit ∧ Continue( ) do
3: // Vertical navigation via Thomson sampling (see § 3.4.2)
4: 𝑛 := Root(T) // Start patch-tree traversal from the root node
5: while 𝑛 has an enabled outgoing edge do
6: for each enabled edge 𝑒 of 𝑛 do

7: 𝐵𝑒𝑡𝑎 (𝛼𝑘 , 𝛽𝑘 ) ← Label(𝑒 )
8: Draw \̂𝑘 according to 𝐵𝑒𝑡𝑎 (𝛼𝑘 , 𝛽𝑘 )
9: end for

10: 𝑒 := argmax
𝑘

\̂𝑘 // Select the 𝑘-th edge having the maximum \̂𝑘

11: 𝑛 := Traverse(𝑛, 𝑒 ) // Traverse edge 𝑛 𝑒→ 𝑛′ and 𝑛 := 𝑛′

12: end while

13: // Horizontal navigation via 𝜖-greedy algorithm (see § 3.4.4)
14: L𝑀𝑆𝑈 ← ExtractMsuList(T (𝑛) )
15: Toss a coin with success probability 𝜖 // see Eq (1)
16: if success then
17: 𝜎𝑛𝑒𝑥𝑡 ← ChooseAtRandom(L𝑀𝑆𝑈 , 𝑖𝑑𝑥 (𝜎𝐿𝑀𝑈 ) )
18: else

19: 𝜎𝑛𝑒𝑥𝑡 ← 𝜎𝐿𝑀𝑈

20: end if

21: patch, execinfos← PatchEval(𝑃, 𝜎𝑛𝑒𝑥𝑡 ,𝑂fix )
22: if patch ≠ ⊥ then // If a valid patch is found
23: Dpatches ← Dpatches ∪ {patch}
24: end if

25: // Update edge labels (see § 3.4.5 and 3.4.6)
26: Update(execinfo, T,L𝑀𝑆𝑈 , 𝜎𝑛𝑒𝑥𝑡 )
27: end while

𝑛 is 2, 4, 8, 16, . . .) as the edge is covered by a larger number of inter-
esting patches. However, we do not change the 𝛽 value when the
scheduled patch is not interesting. Most patches are not interesting
and thus increasing the 𝛽 value makes all Best distributions of the
edges similar to each other. Our approach is similar to that used
in fuzzing. Most fuzzers keep and mutate interesting inputs while
discarding uninteresting ones.

3.4.7 Putting All Together. Algorithm 1 puts together the patch-
scheduling components described in § 3.4. The outermost loop of
the algorithm (lines 2–27) collects valid patches. The program lo-
cation to modify and the mutation operator to use are scheduled
using the combination of vertical navigation (lines 3–12) and hori-
zontal navigation (lines 13–20). Once the scheduled patch 𝜎𝑛𝑒𝑥𝑡 is
validated, we update T and 𝜎𝑛𝑒𝑥𝑡 (lines 21–26).

3.5 On-The-Fly Construction of Patch Space

The Casino algorithm does not require pre-generating patches.
Instead, it constructs a patch-space tree on the fly. Consider an
example shown in Figure 4 where we describe the first four steps
of using Algorithm 1.
Step 1) Given a fault localization result (which is obtained before
patch scheduling begins), we prepare an initial patch-space tree.
Note that the initial patch space tree does not contain any patches
yet, since it is constructed only with the information available
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Figure 4: On-The-Fly Construction of Patch Space (§ 3.5)

in the fault localization result (i.e., files, methods, and locations).
Also, note that all edges are disabled, indicating that no interesting
patch has been found yet. We pass this initial patch-space tree to
Algorithm 1.
Step 2) Since all edges of the tree are disabled, the vertical naviga-
tion (line 4–12) immediately finishes without entering the loop in
lines 5–12. Subsequently, the horizontal navigation is performed
with the MSU list of T (𝑟 ) where 𝑟 is the root node of T . Recall
that T (𝑛) represents the sub-tree rooted at node 𝑛. In the running
example, the MSU list of T (𝑟 ) consists of 𝜎1, 𝜎2, 𝜎3, and 𝜎4 — the
patches the APR tool generates for location 𝑙2 whose suspicious-
ness score (i.e., s-score) is highest (i.e., 0.8), assuming that two
templates 𝑡1 and 𝑡2 are applicable at 𝑙2. Note that the patches for
the other locations are not generated.
Step 3) Suppose at step 2, patch 𝜎2 is randomly chosen and, sub-
sequently, it is shown to be an interesting patch. Then, the edges
leading to 𝜎2 and their neighboring edges are enabled as described
in § 3.4.5.
Step 4) Suppose path 𝑟 → 𝑓1 →𝑚2 is taken while performing the
vertical navigation. Since 𝑚2 has no outgoing enabled edge, the
horizontal navigation is performed with the MSU list of T (𝑚2),
i.e., 𝜎5, 𝜎6, and 𝜎7 whose suspiciousness score is highest (i.e., 0.5)
among the locations of method𝑚2.

As shown in this example,Casino incrementally builds the patch
space on the fly, similar to the conventional APR tools.

4 EXPERIMENTAL DESIGN AND SETUP

4.1 Research Questions

To evaluate our approach Casino, we ask the following four re-
search questions:

• RQ1 (Search Efficiency): How efficiently doesCasino find valid
patches? Refer to § 4.2 for the definition of valid patches.
• RQ2 (Recall): How many versions are successfully repaired?
Refer to § 4.3 for the definition of a successful repair.

• RQ3 (Ablation Study): Casino combines the vertical and hori-
zontal navigations. How does each navigation method contribute
to the overall performance?
• RQ4 (Generalizability): What is the generalizability of Casino?

4.2 Classification of Patches

To assess our research questions, we use several classifications of
patches.

Valid Patch. We call a patch valid when that patch passes all tests
in the given test suite. A valid patch is also called a plausible patch
in the literature of APR.

Acceptable Patch. To assess RQ2, we need to determine the
correctness of a generated patch. In the literature of APR, patch cor-
rectness has been determined eithermanually or using an additional
test suite typically generated using an automated test generation
tool. The former is prone to subjectivity and difficult to be applied
when there are many patches to review. Meanwhile, the latter has
little issue with the applicability but it may fail to identify incorrect
patches. In our experiments, we obtain thousands (2,775) of valid
patches5 and resort to an automatic approach, similar to [51, 61]. To
mitigate the risk of failing to identify incorrect patches, we use the
state-of-the-art differential testing tool, DiffTGen [65], designed
specifically to detect incorrect patches.6 If no semantic difference
is found between an obtained valid patch and its fixed version, we
classify that patch as an acceptable patch.

4.3 Evaluation Methods

For RQ 1 and RQ 2, we compare Casinowith the original APR tools
(see § 4.4) over which Casino is applied. We also compare Casino
with (1) SeAPR [7], the latest state-of-the-art patch-scheduling
algorithm for APR and (2) GenProg𝑆𝐿 , an 𝐴𝑃𝑅𝑆𝐿 version of the

5This is the result from Defects4J v.1.2. For the additional bugs in Defects4J v.2.0,
we obtain 5,645 patches.
6The specific features of DiffTGen to detect incorrect patches are provided in § A.3
of the supplementary appendix. The DiffTGen configuration we used is described in
§ A.4.
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GenProg family algorithm. More details about these comparison
algorithms are provided in § 4.5.

For each buggy version, we run Casino and the other schedul-
ing algorithms in separate sessions for 5 hours following recent
work [28, 36, 50, 63, 74]. We run the two stochastic algorithms,
Casino and GenProg𝑆𝐿 , 50 times, while SeAPR using a determin-
istic scheduling algorithm is run once.

RQ1 (Search Efficiency). We measure search efficiency by count-
ing the number of valid patches over time.7 For two stochastic
algorithms, we compute the mean value of the results from 50 runs.
We say that an algorithm 𝐴1 outperforms 𝐴2 when (1) 𝐴1 finds
valid patches at a faster rate than 𝐴2 and (2) 𝐴1 detects at least as
many valid patches as found by𝐴2 within a time limit (i.e., 5 hours).

RQ2 (Recall). To measure recall, we count the number of buggy
versions that are successfully repaired. We say that an APR tool 𝜏
successfully repairs a buggy version when the patches generated
by 𝜏 include an acceptable patch. In this work, we consider the APR
approach, where the generated patches are ranked in the final step
using a ranking method (see § 2.2), and recall is computed for the
top-𝑁 patches.

To perform ranking, we use ODS [68], the state-of-the-art patch
classification system. ODS classifies a patch as either correct or in-
correct using a machine-learned (ML) model trained with historical
bug patches. We rank a patch based on its correctness likelihood
returned by the ML model of ODS. Please note that in this work, we
do not propose a new patch ranking/classification method, which it-
self is another active research topic of APR [9, 18, 55, 58, 66, 68]. Our
goal here is to assess RQ2 with an existing patch ranking technique.

RQ3 (Ablation Study). We prepare two variations of Casino, i.e.,
Casino without vertical navigation (lines 5–12 of Algorithm 1 are
omitted) and Casino without horizontal navigation (the 𝜖 function
is set to always return 0). Then we compare their performances
with Casino that uses both vertical and horizontal navigations.

RQ4 (Generalizability). As detailed in § 4.4, we evaluate Casino
with a fresh benchmark not used in RQ1–3.

4.4 Evaluation Dataset and Subject APR Tools

To evaluate RQ1–3, we use Defects4J v1.2 [23], considering its
widespread use for APR studies [24, 30–33].Defects4J v1.2 consists
of 395 bugs from 6 open-source software projects. To evaluate RQ4
about generalizability, we use the 440 additional bugs added into
Defects4J v2.0, an extension of Defects4J v1.2.

As for APR tools, we consider the template-based approach and
the learning-based approach used in the currently best-performing
APR tools such as TBar [32] and AlphaRepair [63]. Given that
most APR tools including those best-performing ones are 𝐴𝑃𝑅𝑆𝐿
(i.e., they modify only a single location of the program), we in this
study focus on 𝐴𝑃𝑅𝑆𝐿 . Based on the aforementioned criteria, our
subject APR tools include (i) the four template-based APR tools, i.e.,
TBar [32], Avatar [31], FixMiner [24], and kPar [30] covering all
source-code-level template-based approaches used in recent studies
on APR [5–7, 33] and (ii) two state-of-the-art learning-based APR
tools, Recoder [74] and AlphaRepair [64]. We use all levels of the

7We also report the performance over scheduling iterations in § A.6 of the supplemen-
tary appendix.

patch-space tree (Definition 3) across all four template-based tools
and for the two learning-based APR tools, we omit the template
level since those tools do not explicitly use templates.

4.5 Compared Algorithms

In addition to comparing the performance of Casino with the orig-
inal APR tools, we consider two existing scheduling algorithms
in our comparison: (1) GenProg𝑆𝐿 , a variant of GenProg to con-
duct 𝐴𝑃𝑅𝑆𝐿 (§ 4.5.1) and (2) SeAPR [7], the latest patch scheduling
algorithm (§ 4.5.2).

4.5.1 GenProg
𝑆𝐿

. GenProg𝑆𝐿 repeats to mutate the original pro-
gram by applying a randommutation operator (chosen at uniformly
random) to a random location (chosen at random proportional to
the suspicious score of the location). The concept of generational
evolution is not used because in 𝐴𝑃𝑅𝑆𝐿 , only a single-step modifi-
cation is allowed.

4.5.2 SeAPR. SeAPR assigns a priority score (p-score) to each
patch in a similar way to how spectrum-based fault localization
(SBFL) assigns a s-score to each program element. Intuitively,
SeAPR assigns a higher p-score to a patch that is more similar to an
interesting patch, or a high-quality patch if we use the terminology
of SeAPR. Conversely, a lower priority score is assigned to a patch
that is more similar to a low-quality patch – i.e., a patch that cannot
make any originally failing test pass. Two patches are considered
similar to each other when they modify the same program elements
such as methods. SeAPR computes p-score using an SBFL formula;
by default, SeAPR uses the Ochiai formula [1].

4.6 Experimental Setup through Simulation

In our experiments, we run 6 APR tools with 4 scheduling algo-
rithms described earlier. We run two stochastic algorithms, Gen-
Prog𝑆𝐿 and Casino, 50 times considering their randomness. To
evaluate RQ3 (ablation study), we run two variations of Casino
50 times. For each version of Defects4J v1.2 containing 395 bugs,
we use a 5-hour timeout. Lastly, to evaluate RQ4 (generalizability),
we run the original scheduling algorithms of the six APR tools and
Casino 50 times again for 440 new buggy versions in Defects4J
v2.0. All these numbers add up to 3,073,020 hours (≈ 350 years).

SimAPR. To conduct experiments in a shorter time frame, we im-
plement a replay-based patch-scheduling simulation system named
SimAPR. Figure 5 shows how SimAPR interacts with the other mod-
ules of APR to search for valid patches. SimAPR takes as input
(1) a buggy program 𝑃𝑏 , (2) a ranked list of suspicious program
locations of 𝑃𝑏 , and (3) a subject patch-scheduling algorithm. To
obtain a ranked list of suspicious program locations, we use the
latest release of GZoltar [8] v1.7.3 with the Ochiai [1] formula.
We do not use the FL (fault localization) module of the original APR
tool to use the same FL result across all six subjects.

Given an input, SimAPR runs the patch-scheduling algorithm to
choose the program location 𝑙 to modify. Then, SimAPR retrieves
the list of patches for 𝑙 generated by the subject APR tool. To re-
duce patch generation time during simulation, we pre-generate the
patches for all suspicious program locations in the offline phase
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Figure 5: Interaction of SimAPR with the other modules. The

dashed boxes represent offline modules (see § 4.6).

before running SimAPR. It should be noted that the patch gener-
ation modules of all six APR tools used in our experiments are
deterministic. Therefore, given a program location 𝑙 , each APR tool
consistently generates the same list of patches for 𝑙 . Once the list
of patches is obtained, SimAPR chooses a patch to validate from
the list while running the patch-scheduling algorithm. The selected
patch is then validated using the test suite, similar to the original
APR tools. To save validation time, we cache the validation result of
each patch and reuse it in subsequent runs.8 To store the cached val-
idation results, we extend the definition of the patch configuration
𝜎 defined in Definition 1 as follows:

Definition 10 (Extended Patch Configuration). Consider the patch
configurations 𝜎 generated by an APR tool 𝜏 . An extended patch
configuration 𝜎𝑒 extends 𝜎 (see Definition 1) with the following
three additional attributes:
• valid: true if 𝜎 is a valid patch; false otherwise.
• time𝑔𝑒𝑛 : time taken for 𝜏 to generate the patch referred to by 𝜎 .
• time𝑣𝑎𝑙 : time taken to validate 𝜎 with a given test suite. The
validation process stops at the first failing test, as done in most
APR tools, including our six subject tools.

Simulation of APR via SimAPR. We evaluate the performance
of the patch-scheduling algorithms using SimAPR, inspired by Fuz-
zSim [62], which compares the performance of various fuzzing
algorithms via simulation. As mentioned, we perform a simulation
in two phases, i.e., an offline phase followed by an online phase.
In the offline phase, we conduct fault localization and generate
patches for all suspicious program locations using the subject APR
tools. We represent each patch as an extended patch configuration
𝜎𝑒 . When generating a patch, we measure the time and assign the
obtained value to 𝜎𝑒 .time𝑔𝑒𝑛 . Meanwhile, the valid and time𝑣𝑎𝑙
attributes are initialized with ⊥.

In the follow-up online phase, we run a subject patch-scheduling
algorithm using SimAPR. For each scheduled patch 𝜎𝑒 , SimAPR
performs the following depending on the value of 𝜎𝑒 .valid.
• When 𝜎𝑒 .valid = ⊥: SimAPR validates 𝜎𝑒 with the given test
suite and assigns the validation result (either true or false) to
8Tests are assumed to be deterministic following the current convention of APR.

𝜎𝑒 .valid. When validating 𝜎𝑒 , SimAPR measures the validation
time and assigns the obtained value to 𝜎𝑒 .time𝑣𝑎𝑙 .
• When 𝜎𝑒 .valid ≠ ⊥: SimAPR returns 𝜎𝑒 .valid, 𝜎𝑒 .time𝑔𝑒𝑛 and
𝜎𝑒 .time𝑣𝑎𝑙 to the scheduling algorithm.

While running a subject scheduling algorithm in our experi-
ments, we accumulate 𝜎𝑒 .time𝑔𝑒𝑛 and 𝜎𝑒 .time𝑣𝑎𝑙 for every sched-
uled 𝜎𝑒 and count the number of detected valid patches.

Scheduling Algorithms. SimAPR currently supports four sched-
uling algorithms used in our experiment: (1) sequential scheduling
that iterates over a given list of patches, (2) GenProg𝑆𝐿 , (3) SeAPR,
and (4) Casino. The sequential scheduling is used to simulate the
original scheduling order of a subject APR tool. The SeAPR algo-
rithm available in SimAPR uses the configuration shown to work
best in its original paper [7].9

Open Science. We expect that SimAPR will be useful for other
researchers interested in studying patch-scheduling algorithms. In
support of open science, we release the source code of SimAPR.
With SimAPR, a new patch-scheduling algorithm can be easily
evaluated.

Experimental Environment. We conducted experiments using
a machine with AMD EPYC 2.6GHz CPUs (1024GB RAM) and an-
other one with Intel Xeon Gold 3GHz CPUs (128GB RAM). The
former was used for all subject tools except for FixMiner which
was experimented on the latter machine. Please note that all four
compared scheduling algorithms were run on the same machine.
We used Ubuntu 20.04.4 LTS and Java 1.7 across all experiments.

5 EXPERIMENTAL RESULTS

5.1 RQ1: Search Efficiency

Figure 6 shows how many valid patches are detected over time
during 300 minutes. For GenProg𝑆𝐿 and Casino, the mean values
of the results from 50 runs are shown. We also draw shade around
the lines for those two algorithms to show 95% confidence intervals
(CI) for the cumulative number of patches at each time point. As
indicated by the thin shades, only marginal variance is observed
from 50 runs where at each run, we use a unique random seed. We
observe the following from the figure.
(1) Improved Performance.Casino detects valid patches at faster
rates than the original algorithms, as indicated by the red curves
running above the blue ones, though the degree of improvement
varies depending on an APR tool. Casino particularly performs
well in TBar, Recoder and AlphaRepair. Notice that in these
three tools, a larger number of valid patches are found than in
the other tools, suggesting that Casino seems to work well when
the patch space contains valid patches more abundantly. In terms
of the total number of valid patches detected within a time limit,
Casino discovers more (Avatar, kPar, Recoder andAlphaRepair)
or similarly (TBar and FixMiner) as compared to the original
algorithms.
(2) Mixed Result of SeAPR and GenProg

𝑆𝐿
. Unlike Casino,

the results of SeAPR and GenProg𝑆𝐿 are mixed. SeAPR outper-
forms the original algorithm in AlphaRepair and FixMiner. For
kPar, SeAPR performs worse than the original algorithm in the
9More details are available in § A.5 of the supplementary appendix.
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Figure 6: Search efficiency in finding valid patches. In the

legend, GenProg refers to GenProg
𝑆𝐿
.

beginning but eventually finds more valid patches. In the three
remaining tools (TBar, Avatar, and Recoder), SeAPR detects valid
patches at a slower rate than the original algorithms. As for Gen-
Prog𝑆𝐿 , it outperforms the original algorithm in FixMiner, kPar,
and AlphaRepair. However, the performance of GenProg𝑆𝐿 is
worse than the original in TBar, Avatar, and Recoder.
(3) Casino is a frequent winner. Casino wins over SeAPR and
GenProg𝑆𝐿 in the majority of the cases, including TBar, Avatar,
Recoder and AlphaRepair. In FixMiner, GenProg𝑆𝐿 wins over
Casino with a narrow margin. In kPar, there is no clear winner.
While GenProg𝑆𝐿 performs best in the beginning, Casino and
SeAPR eventually surpass GenProg𝑆𝐿 . SeAPR performs worst dur-
ing most periods but wins closely at the almost last moment.

5.2 RQ2: Recall

Figure 7 shows how many versions are successfully repaired over
time within the 300-minute period. At each plot of Figure 7, the
coordinate (𝑥,𝑦) represents that within 𝑥 minutes, 𝑦 versions are
successfully repaired when accumulating the results from the six
APR tools. The shade around the red line (Casino) and the yellow
line (GenProg𝑆𝐿) represents the 95% confidence intervals (CI) for
the cumulative number of valid patches at each time point.

The four plots of Figure 7 show the recall for top-𝑁 patches. As
𝑁 increases, the number of successfully repaired versions increases
(compare the Y-axes). The overall pattern is consistent across 𝑁 .
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Figure 7: Recall at top-𝑁 when ranking is computed using

ODS. The Y-axis shows the number of successfully repaired

versions.
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Figure 8: Results for ablation study and generalizability

Only Casino outperforms the original algorithms — i.e., a repair
succeeds more frequently and at a faster rate than in the original
algorithms. In comparison, GenProg𝑆𝐿 succeeds in repairing bugs
at a slower rate than the original algorithms, although eventually,
it succeeds to repair more instances of buggy versions. Meanwhile,
SeAPR performs worst in our experiments.

5.3 RQ3: Ablation Study

Figure 8(a) compares the performance of Casino with their two
variances in lack of either vertical or horizontal navigation. In the
figure, the coordinate (𝑥,𝑦) represents that within 𝑥 minutes, the
six subject APR tools generate 𝑦 valid patches when those six tools
run in parallel with separate instances of the same set of buggy
versions. It is observed that to maximize performance, both vertical
and horizontal navigations should be used.

5.4 RQ4: Generalizability

To assess the generalizability of Casino in terms of search effi-
ciency, we reran SimAPR against the 440 new bugs in Defects4J
v.2.0. Figure 8(b) shows how many valid patches are detected over
time when the original algorithms and Casino are used. Compare
Figure 8(b) with Figure 8(a). In both figures, Casino outperforms
the original algorithms, implying the generalizability of Casino.

6 THREATS TO VALIDITY

Benchmarks and Subject Tools. As with all experimental re-
sults, caution should be taken when generalizing our results. To
mitigate this threat, we evaluate the generalizability of Casino
with Defects4J v.2.0.
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Patch Correctness. To validate a large number of patches, we
took a best-effort approach by using the differential testing tool
specialized for patch correctness validation. Nevertheless, DiffT-
Genmay fail to detect incorrect patches. Nonetheless, the incorrect
“acceptable” patches can be viewed as patches whose incorrectness
cannot be detected easily.

7 RELATED AND FUTUREWORK

The search efficiency of APR is affected by many factors, including
patch prioritization, patch space reduction, test case prioritization,
and test-suite reduction.

Patch Prioritization. To prioritize patch candidates, existing
APR approaches use various additional information such as code
context [60], program contracts [45], code comments [67], Q&A
sites [15], and existing patches [21, 25, 35]. These approaches typ-
ically build a statistical model and use it to guide the search for
repair. Recent deep-learning-based APR [13, 22, 28, 29, 36, 64, 74]
can be viewed as an extension of this line of work. Compared to
them, Casino adjusts prioritization dynamically, similar to fuzzing.
While GenProg [26] and its descendants [71, 72] also work simi-
larly, those algorithms use genetic programming as a main vehicle,
whereas Casino works in a more similar way to grammar-aware
mutation-based fuzzing. Casino is a patch-scheduling algorithm
for 𝐴𝑃𝑅𝑆𝐿 and extending it to multi-line APR is a potential future
work.

Meanwhile, semantics-based approaches [2, 39, 40, 43, 69, 70] do
not directly search for patches. Instead, they first search for con-
straints that a patch must satisfy and then synthesizes a patch that
satisfies the constraints. While most semantics-based approaches
do not use dynamic information to guide the search, FAngelix [70]
performs a stochastic search for constraints using MCMC (Markov
Chain Monte Carlo) sampling [4]. Compared to this work, Casino
performs a stochastic search for patches, not constraints.

Patch Space Reduction. To keep the patch space tractable, sev-
eral patch space reduction techniques have been developed. These
techniques exclude from the patch space harmful patch patterns
(a.k.a., anti-patterns) [53], patch patterns involving intractably large
search space [34], and patch candidates belonging to already cov-
ered test-equivalent classes [38]. Our patch-scheduling algorithm
does not perform patch-space reduction and a combination of
Casino and patch-space reduction technique is a promising di-
rection to improve the search efficiency of APR.

Test Case Prioritization and Test-Suite Reduction. Running
a test-driven APR tool typically involves the repetitive execution
of tests. To reduce testing cost, test case prioritization [48] (which
reveals incorrect patches as soon as possible) and regression test
selection [14, 47] (which reduce the number of tests to run) have
been developed and used in some APR tools [41, 46]. Casino and
these techniques to manipulate a test suite are orthogonal and
complementary to each other.

8 CONCLUSION

The researchers of APR have been faced with two seemingly con-
flicting goals. For the adoption of APR in the field, we need an APR
technique that is both effective (fixing as many bugs as possible by

enlarging the search space) and efficient (fixing them as soon as
possible). In this paper, we have shown that it is possible to improve
the search efficiency of APR for a given patch space.

The key ideas used in Casino— such as hierarchically structured
patch space and stochastic patch-space navigation via multi-armed
bandit — are inspired by recent advancements in fuzzing. In this
paper, we have shown how fuzzing and APR are closely related
to each other and used the obtained insight to design an efficient
patch-space scheduling algorithm.

Our promising results encourage us to further seek a way to
transfer fuzzing techniques to the APR side. Furthermore, we be-
lieve that some techniques of APR can be transferred to the fuzzing
side for its improvement, completing a cycle of yin and yang.
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