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A B S T R A C T

Context: Constraint-based program repair has been developed as one of the main techniques for automated
program repair. Given a buggy program and a test suite, constraint-based program repair first extracts a repair
constraint 𝜑, and then synthesizes a patch satisfying 𝜑. Since a patch is synthesized in a correct-by-construction
manner (rather than compiling and testing each repair candidate source code), the constraint-based approach,
in theory, requires less runtime overhead than the G&V approach. Nevertheless, the performance of existing
constraint-based approaches is still suboptimal.
Objective: In this work, we propose a novel technique to expedite constraint-based program repair. We aim
to boost runtime performance without sacrificing repairability and patch quality.
Method: The existing constraint-based program repair searches for a patch specification in an unguided
manner. We introduce a novel guided search algorithm based on MCMC sampling.
Results: Our experimental results for the 50 buggy versions of 5 real-world subjects (i.e., Libtiff, PHP, GMP,
Gzip, and Wireshark) show that our method named FAngelix is on average an order of magnitude faster
than Angelix (a state-of-the-art constraint-based program repair tool), showing up to 23 times speed-up. This
speed-up is achieved without sacrificing repairability and patch quality.
Conclusion: This paper proposes a novel technique that expedites constraint-based program repair, using a
search-based technique based on MCMC sampling. Our experimental results show the promise of our approach.
. Introduction

Automatic program repair has made major strides in the last decade
howing exciting potential. Numerous approaches have been proposed
o fix more bugs more precisely.1 In this paper, we investigate another
mportant and relatively less studied aspect of program repair, that is,
he runtime of repair. Why runtime? A report from Facebook [1] shar-
ng the experience of deploying Infer [2], a well-known static analyzer,
rovides an interesting lesson which we paraphrase here. Developers at
acebook initially paid almost zero attention to the faults reported by
nfer. Only after Infer started to report faults more immediately did the
ix rate ‘‘rocket to over 70%’’.

The runtime efficiency, despite its importance, is a relatively un-
erstudied problem in the automated program repair research [3].
he widely adopted generate-and-validate (G&V) approach repeatedly
enerates patch candidates until a patch is found or a timeout occurs.
s reported in [3], state-of-the-art G&V tools such as SimFix [4] and
Bar [5] repeatedly apply hundreds to thousands of patch candidates
efore being able to find a patch.

Meanwhile, the constraint-based approach (also known as the
emantics-based approach) takes a different approach to generate a

∗ Corresponding author.
E-mail addresses: jooyong@unist.ac.kr (J. Yi), elkhan@unist.ac.kr (E. Ismayilzada).

1 We describe some of them in Section 8.

repair. Unlike the generate-and-validate approach, the constraint-based
approach first extracts a repair constraint 𝜑, and then synthesizes a
patch satisfying 𝜑. Given that 𝜑 is used as a specification of a patch,
a repair constraint 𝜑 can also be viewed as a patch specification. In
this paper, we will use these two terminologies, ‘‘repair constraint’’ and
‘‘patch specification’’, interchangeably.

Since a patch is synthesized in a correct-by-construction manner
(rather than compiling and testing each repair candidate source code),
the constraint-based approach, in theory, requires less runtime over-
head than the G&V approach. Nevertheless, the performance of existing
constraint-based approaches is still suboptimal. For example, it takes
more than 2 h for Angelix, a state-of-the-art constraint-based repair tool,
to fix a buggy Libtiff version (L-3b848). As will be shown, the same bug
can be fixed two times faster with our approach.

Reasons for suboptimal performance. We identify two problems,
one general problem and another problem specific to Angelix. The
first problem stems from the fact that the existing constraint-based
approaches use symbolic execution to extract a repair constraint; a
suspicious expression is replaced with a symbol 𝛼, and various execu-
tion paths are executed using symbolic execution with an aim to find
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an ‘‘angelic path’’ in which a given test passes. Then, the constraint
about 𝛼 to follow the discovered angelic path is extracted into a patch
specification. While searching for an angelic path, a symbolic execution
tool such as KLEE [6] blindly tries out various symbolic execution paths
without knowing which one is more likely to be an angelic path than
the others. In other words, no guidance is given to symbolic execution while
searching for an angelic path.

The second problem is specific to Angelix, which collects multiple
angelic paths instead of terminating the search as soon as the first
angelic path is found. This is to avoid synthesizing an incorrect patch
when a wrong angelic path is discovered before a correct one. Note that
there can be many angelic paths passing a given test. Angelix mitigates
this problem by passing a set of angelic paths to its patch synthesizer,
which chooses to use an angelic path that leads to a repair syntactically
closest to the original program. However, finding out multiple angelic
paths inevitably slows down the runtime performance.

Our guided approach. In this work, we propose a novel guided algo-
rithm to search for an angelic path efficiently. Our algorithm guides the
search toward execution paths whose involved costs become smaller,
using a well-known MCMC (Markov Chain Monte Carlo) sampling
technique [7]. The cost of an execution path is computed using a user-
provided cost function. While our guided algorithm is not tied to a
specific cost function, we in this study evaluate our approach with
simple cost functions for the sake of usability. For example, suppose
a given test specifies its expected output as a string value. In that case,
we return the edit distance between the expected output and the actual
output of execution as a cost.

Our algorithm stops as soon as the first angelic path 𝜋 is found
instead of collecting multiple angelic paths. Since 𝜋 may not be a
correct angelic path, we refine 𝜋 into another angelic path 𝜋′. That
is, following minimal repair heuristics [8–10] which opts for a repair
syntactically or semantically closest to the original program under
repair, we transform 𝜋 into 𝜋′ closest to the execution path observed
in the original program. Note that we represent an execution path
with a sequence of bits (0 and 1 represent the true and false branch,
respectively).

Our results. Our experimental results for the 50 buggy versions of
5 real-world subjects (i.e., Libtiff, PHP, GMP, Gzip, and Wireshark) show
that our method named FAngelix is on average 3.5 times faster than Angelix,
showing up to 23 times speed-up. Note that this speed-up is achieved
without sacrificing repairability. In fact, FAngelix succeeds in generating
a patch in four more versions than Angelix, although our approach is not
designed to improve repairability. More surprisingly, FAngelix generated
correct patches in three more versions than Angelix. All in all, FAngelix
generates correct patches more frequently, consistently, and quickly than
Angelix.

Our contributions. Overall, we make the following contributions:

1. We identify why the runtime performance of the existing
constraint-based repair approaches is suboptimal.

2. We introduce a novel guided specification inference technique
based on MCMC sampling.

3. We provide experimental results that show that our technique,
FAngelix, outperforms Angelix, in terms of runtime efficiency and
efficacy in generating correct patches.

Our tool and experimental results are available in the following URL:
https://github.com/jyi/fangelix.

2. Background

In this section, we briefly describe the techniques and theoret-
ical background upon which our approach is built. These include
constraint-based program repair (Section 2.1), Markov Chain Monte
2

Carlo sampling (Section 2.2), and delta debugging (Section 2.3).
Fig. 1. The workflow of the constraint-based program repair. First, a suspicious
location x > y is localized typically using spectrum-based fault localization. Second,
a patch specification 𝜑 for the suspicious location is inferred. Lastly, a patch, x ≥ y,
satisfying 𝜑 is synthesized.

2.1. Constraint-based program repair

Fig. 1 shows the workflow of constraint-based program repair. In
the first step, a list of suspicious expressions is obtained, typically using
spectrum-based fault localization [11], which computes the suspicious-
ness scores of program entities such as statements and expressions
based on program spectra—runtime data collected while running a
given test suite. Spectrum-based fault localization is widely used in all
test-based program repair approaches. Note that the existing constraint-
based program repair performs a fix at an expression granularity, and
hence fault localization is performed at the expression level. In Fig. 1,
expression x > y is considered to be faulty.

In the second step, a suspicious expression is replaced with a sym-
bolic variable (denoted with 𝛼 in Fig. 1), and subsequently, symbolic
execution is performed. The goal in this step is to infer a patch specifi-
cation that describes when a given test passes. For example, the table
of Fig. 1 represents a patch specification. That is, a given test passes if
𝛼 takes true, false, and false in sequence. In other words, sequence
[true, false, false] forms an angelic path. The table also shows the
environment (values of in-scope variables) in which an angelic path
is taken. For example, when 𝛼 is first encountered, variables x and y
have 3 and 2, respectively. This should be interpreted as follows. When
x and y have 3 and 2, a patched new expression should return true. The
remaining three rows of the table should be interpreted similarly.

In the last step, a patch is generated using a program synthesis
technique, which synthesizes a patch satisfying a given patch spec-
ification. In our running example, a synthesized expression x ≥ y
satisfies all 4 rows of the patch-specification table. The existing work
uses various program synthesis techniques such as component-based
program synthesis [12] and syntax-guided synthesis [13]. In general,
multiple expressions satisfy a patch specification, and the existing
approaches use heuristics to choose one among them. For example,
Angelix synthesizes a syntactically closest patch (in terms of the number
of AST-level edits) to the original expression.

Patch specification inference. We describe in more detail the patch-
specification-inference step, the topic of this work. Algorithm 1 shows
the patch specification algorithm of Angelix, which we modify in this
work. Given a set of suspicious expressions 𝐸 identified using spectrum-
based fault localization, Algorithm 1 performs controlled symbolic
execution. That is, during symbolic execution, every occurrence of 𝑒 is
replaced with a fresh symbol (see line 6). The resultant path condition
𝑝𝑐 is conjoined with 𝑂𝑎 = 𝑂𝑒 where 𝑂𝑎 and 𝑂𝑒 refer to the actual output
and the expected output, respectively. An angelic path leading to the
expected output can be obtained by checking the satisfiability of the
augmented path condition 𝑅 (see lines 8–11). This process is repeated
until all paths are explored, or the maximum number of paths reaches
(see line 3). The output of the algorithm is an angelic forest defined in
Definition 1.

https://github.com/jyi/fangelix
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Algorithm 1 The specification inference algorithm of Angelix
Input: program 𝑃
Input: test case (𝐼, 𝑂𝑒) // 𝐼 : input, 𝑂𝑒: expected output
Input: a set of suspicious expressions 𝐸
Output: angelic forest 𝐴
1: 𝐴 ← ∅; 𝑘 ← 0
2: for 𝑒 ∈ 𝐸 do
3: while there is an unexplored path ∧ 𝑘++ < 𝑚𝑎𝑥𝑘 do
4: /* Using a symbolic execution, extract */
5: * an actual output 𝑂𝑎 and a path condition 𝑝𝑐 */
6: 𝑝𝑐, 𝑂𝑎 ← ControlledSymExe(𝑃 , 𝐼, 𝑒)
7: 𝑅 ← 𝑝𝑐 ∧ 𝑂𝑎 = 𝑂𝑒
8: if 𝑅 is satisfiable then
9: /* Extract a model using a constraint solver */

10: 𝑀 ← GetModel(𝑅)
11: 𝐴 ← 𝐴 ∪ ExtractAngelicPath(𝑀)
12: end if
13: end while
14: if 𝐴 ≠ ∅ then
15: break
16: end if
17: end for
18: return 𝐴

Fig. 2. An example of an angelic forest for a test 𝑇 and a suspicious location 𝐿.

Definition 1 (Angelic Forest). An angelic forest is a singleton dictionary
for a suspicious expression 𝑒2:

{𝑒 ∶ {[(𝜎𝑖, 𝑣𝑖)]
𝐿(𝑗)
𝑖=1 }

𝑛
𝑗=1}

Given an angelic forest 𝐴, 𝐴[𝑒] returns a set of angelic paths, where in
each angelic path, a given test passes. Notation (𝜎, 𝑣) denotes a pair of an
angelic value 𝑣 and its environment 𝜎 of 𝑣, where 𝜎 consists of in-scope
variables at location 𝑒 and their values at the time when 𝑣 is obtained.
Notation [(𝜎𝑖, 𝑣𝑖)]

𝐿(𝑗)
𝑖=1 denotes a 𝐿(𝑗)-length sequence of pairs where 𝐿(𝑗)

denotes the length of the 𝑗th angelic path. Lastly, 𝑛 denotes the total number
of angelic paths in an angelic forest.

Fig. 2 shows an example of an angelic forest. Notations 𝑇 and 𝐿
represent respectively the test under consideration and the location of a
suspicious expression (e.g., x > y of Fig. 1). The example angelic forest
contains two angelic paths where the first angelic path is a sequence
of true, true, false, and false whereas the second angelic path is a
sequence of true, false, and false. This means that test 𝑇 passes when
one of these angelic paths is taken. Since it is generally not known
which angelic path in an angelic forest is a correct one, the patch syn-
thesizer of Angelix considers all available angelic paths simultaneously
and produces a patch that is syntactically closest to the original buggy
expression, using a MaxSMT solver. The angelic forest also contains the
environment of each angelic path, the values of in-scope variables x and
y which can appear in a synthesized expression.

2.2. Markov Chain Monte Carlo sampling

To guide the search for an angelic path, we use MCMC (Markov
Chain Monte Carlo) sampling [7] in this work instead of symbolic

2 We assume that suspicious expressions are investigated one by one.
3

execution. MCMC sampling is a well-established subject, and here we
only provide a brief description. More information is available in [7].

In MCMC sampling, samples associated with higher probabilities
are more frequently sampled than those associated with lower prob-
abilities. In our work, a sample is viewed as an execution path and
expressed as a bit-vector. For example, the first angelic path shown in
Fig. 2 (i.e., true, true, false, and false) is represented with a bit-vector
100. Using MCMC sampling, we explore the space of bit-vectors. Note
hat as the length of a bit-vector increases, the size of the bit-vector
pace increases exponentially, and MCMC sampling helps explore large
pace efficiently.

Among various MCMC sampling methods, we use a widely used
etropolis–Hastings algorithm [14,15]. The algorithm essentially per-

orms a random walk by repeatedly proposing a new sample 𝑆∗ by
utating the current sample 𝑆. In our case, we repeat to randomly
utate the current execution path (represented with a bit-vector) to

btain the next execution path to consider.
An important property of MCMC sampling is that a new proposal

∗ is not always accepted as the next current sample. Instead, 𝑆∗ is
ccepted with the Metropolis–Hastings acceptance probability, 𝛼(𝑆 → 𝑆∗),

defined as follows:

𝛼(𝑆 → 𝑆∗) = min
(

1,
𝑝(𝑆∗)
𝑝(𝑆)

⋅
𝑞(𝑆|𝑆∗)
𝑞(𝑆∗

|𝑆)

)

(1)

where 𝑝(𝑆) and 𝑝(𝑆∗) refer to the probability density function of 𝑆 and
𝑆∗, respectively, and 𝑞(𝑆∗

|𝑆) refers to the conditional probability of
roposing 𝑆∗ given 𝑆. Notation 𝑞(𝑆|𝑆∗) can be described similarly.

The density function 𝑝(𝑆) appearing in the acceptance probability
can be described with an arbitrary cost function 𝑐 for 𝑆 in the following
way [16]:

𝑝(𝑆) = 1
𝑍

exp (−𝛽 ⋅ 𝑐(𝑆)) , (2)

where 𝛽 is a configurable annealing constant and 𝑍 refers to a partition
function that normalizes the distribution. Combining Eqs. (1) and (2)
leads to the following equation we use in this work:

𝛼(𝑆 → 𝑆∗) = min
(

1, exp (−𝛽 ⋅ 𝑘) ⋅
𝑞(𝑆|𝑆∗)
𝑞(𝑆∗

|𝑆)

)

, (3)

where 𝑘 = 𝑐(𝑆∗) − 𝑐(𝑆). Note that 𝑍 of Eq. (2) is canceled out and
disappears in Eq. (3). Notice that to compute 𝛼(𝑆 → 𝑆∗), we need the
cost of each proposal and the two conditional probabilities, 𝑞(𝑆∗

|𝑆) and
𝑞(𝑆|𝑆∗).

2.3. Minimal repair and delta debugging

There can be multiple angelic paths that can pass a given test,
and an angelic path found via MCMC sampling may not be a correct
one. To address this issue, we use minimal repair heuristics used in
previous work [8–10]. The key idea of minimal repair heuristics is
that when there are multiple repairs, a repair closest to the original
program is more likely to be correct than the others. For example,
Angelix produces a patch syntactically closest to the original buggy
expression, as mentioned in Section 2.1. Meanwhile, we apply minimal-
repair heuristics at the specification level. Recall that we represent an
angelic path with a bit-vector. Thus, our goal is to find a bit-vector �⃗�
that satisfies the following two conditions:

(C1) A given test should pass with �⃗�, and

(C2) �⃗� is closest to the bit-vector corresponding to the original execu-
tion path obtained from the buggy version.

We achieve our goal using delta debugging [17]. Algorithm 2
shows the 𝑑𝑑𝑚𝑖𝑛 algorithm of delta debugging applied to our context.
Given an angelic path represented with a bit-vector �⃗� and the original
execution path represented with �⃗� , the difference between these two
1



Information and Software Technology 146 (2022) 106865J. Yi and E. Ismayilzada
Algorithm 2 𝑑𝑑𝑚𝑖𝑛(𝛥, 𝑛)
Input: a list of elements 𝛥

⊳ When 𝑑𝑑𝑚𝑖𝑛 is initially called, 𝛥 = |�⃗� − �⃗�1| where �⃗� and �⃗�1 represent
an angelic path and the original execution path, respectively. Note that a
given test passes in an angelic path (i.e., 𝑡𝑒𝑠𝑡(�⃗�) = ✓) while the same test
fails for the original path (i.e., 𝑡𝑒𝑠𝑡(�⃗�1) = ✗).

Input: a number of partitions 𝑛
⊳ 𝛥 is divided into 𝑛 partitions

Output: a list of elements 𝛥𝑚𝑖𝑛 ⊆ 𝛥 satisfying the following:
⊳ 𝑡𝑒𝑠𝑡(𝑢𝑝𝑑𝑎𝑡𝑒(�⃗�1, 𝛥𝑚𝑖𝑛)) = ✓

⊳ ∀𝛿𝑖 ∈ 𝛥𝑚𝑖𝑛.𝑡𝑒𝑠𝑡(𝑢𝑝𝑑𝑎𝑡𝑒(�⃗�1, 𝛥𝑚𝑖𝑛 − {𝛿𝑖})) = ✗

1: while 𝑡𝑒𝑠𝑡(𝑢𝑝𝑑𝑎𝑡𝑒(�⃗�1, 𝛥𝑖)) = ✓ do ⊳ 𝛥 = 𝛥1 ∪⋯ ∪ 𝛥𝑛
2: /* reduce to subset */
3: return 𝑑𝑑𝑚𝑖𝑛(𝑢𝑝𝑑𝑎𝑡𝑒(�⃗�1, 𝛥𝑖), 2)
4: end while
5: while 𝑡𝑒𝑠𝑡(𝑢𝑝𝑑𝑎𝑡𝑒(�⃗�1,∇𝑖)) = ✓ do ⊳ ∇𝑖 = 𝛥 − 𝛥𝑖
6: /* reduce to complement */
7: return 𝑑𝑑𝑚𝑖𝑛(𝑢𝑝𝑑𝑎𝑡𝑒(�⃗�1,∇𝑖), 𝑚𝑎𝑥(𝑛 − 1, 2))
8: end while
9: if 𝑛 < |𝛥| then

10: /* increase granularity */
11: return 𝑑𝑑𝑚𝑖𝑛(𝛥,𝑚𝑖𝑛(|𝛥|, 2𝑛))
12: else
13: return 𝛥
14: end if

Fig. 3. High-level description of our approach. FAngelix searches for an angelic path
𝜋𝑛 via random walk starting from the initial execution path 𝜋1. Notation

∗
→ represents

the transitive closure of transitions. The cost of 𝜋3 is higher than that of 𝜋2, and 𝜋3 is
discarded with a high probability.

bit-vectors is represented with 𝛥 = |�⃗� − �⃗�1|. For example, if �⃗�1 and �⃗�
are 1000 and 0001, respectively, then 𝛥 is defined as the following two
changes: (1) changing the first bit of �⃗�1 from 1 to 0 and (2) changing the
last bit of �⃗�1 from 0 to 1. The 𝑑𝑑𝑚𝑖𝑛 algorithm uses a classical ‘‘divide
and conquer’’ approach and returns 𝛥𝑚𝑖𝑛 ⊆ 𝛥 satisfying the following
two conditions:

1. 𝑡𝑒𝑠𝑡(𝑢𝑝𝑑𝑎𝑡𝑒(�⃗�1, 𝛥𝑚𝑖𝑛)) = ✓

2. ∀𝛿𝑖 ∈ 𝛥𝑚𝑖𝑛.𝑡𝑒𝑠𝑡(𝑢𝑝𝑑𝑎𝑡𝑒(�⃗�1, 𝛥𝑚𝑖𝑛 − {𝛿𝑖})) = ✗

We use notation 𝑢𝑝𝑑𝑎𝑡𝑒(�⃗�, 𝛥) to represent a bit-vector obtained by
updating �⃗� with 𝛥. For example, 𝑢𝑝𝑑𝑎𝑡𝑒(1000, {changing the first bit to
0, changing the last bit to 1}) returns 0001. Notations ✓ and ✗ represent
test success and failure, respectively. By the first condition, 𝛥𝑚𝑖𝑛 induces
an angelic path when applied to �⃗�1. And by the second condition, there
is no 𝛥′ ⊂ 𝛥𝑚𝑖𝑛 that induces an angelic path when applied to �⃗�1. Notice
that these two conditions match the two aforementioned conditions C1
and C2.

3. Our Approach: FAngelix

Our approach is an extension of a constraint-based program repair
approach, Angelix [8], which takes the following three steps to generate
a repair: (1) fault localization, (2) patch specification inference, and (3)
patch synthesis. Other constraint-based approaches [10,18–21] work
similarly. We change the module for patch specification inference while
reusing the existing modules of Angelix for the remaining two steps.
4

Algorithm 3 describes our patch specification inference algorithm,
replacing the counterpart of Angelix shown in Algorithm 1. A detailed
description of the algorithm will be provided shortly in this section.

Fig. 3 describes a high-level overview of our approach. FAngelix
searches for an angelic path 𝜋𝑛 via random walk starting from the initial
execution path 𝜋1. Recall that a previously failing test passes if the
modified program follows an angelic path. The next execution path to
explore is prepared by randomly mutating the current execution path,
which is initially set to 𝜋1. For each execution path 𝜋𝑖, its cost 𝑐(𝜋𝑖)
is measured. If 𝑐(𝜋𝑖) is lower than that of the current execution path,
the current execution path is updated into 𝜋𝑖. Conversely, if 𝑐(𝜋𝑖) is
higher than that of the current execution path, 𝜋𝑖 is discarded with a
probability 𝑝; note that it is still allowed that the current execution path
is updated into 𝜋𝑖 with probability 1 − 𝑝, following MCMC sampling
(see Section 2.2), which prevents the search from getting stuck in local
minima. Following equation (3), the probability 𝑝 can be defined as
1 − 𝛼(𝜋𝑐 → 𝜋𝑖) where 𝛼(𝜋𝑐 → 𝜋𝑖) represents the probability of updating
the current execution path from 𝜋𝑐 to 𝜋𝑖. Notice that 𝑝, the probability
to discard 𝜋𝑖, increases as 𝑐(𝜋𝑖) − 𝑐(𝜋𝑐 ) increases.

Technical challenge. We compute 𝛼(𝜋𝑐 → 𝜋𝑖) using Eq. (3) we copy
below.

𝛼(𝑆 → 𝑆∗) = min
(

1, exp (−𝛽 ⋅ 𝑘) ⋅
𝑞(𝑆|𝑆∗)
𝑞(𝑆∗

|𝑆)

)

,

where 𝑞(𝑆∗
|𝑆) and 𝑞(𝑆|𝑆∗) represent the conditional probability of

proposing 𝑆∗ given 𝑆 and vice versa, respectively. If we assume that
the size of 𝑆 and 𝑆∗ is the same (in our context, 𝑆 and 𝑆∗ are bit-
vectors representing execution paths) and the bits of 𝑆 are mutated in
a uniform manner, computing 𝑞(𝑆∗

|𝑆) and 𝑞(𝑆|𝑆∗) is straightforward.
For example, the probability of changing configuration 00 to a new
configuration 01 is simply 1∕4.

However, neither assumptions hold in our case. The first assumption
(the size of 𝑆 and 𝑆∗ is the same) does not hold because depending
on an execution path, the suspicious expression under consideration
may be executed a different number of times. Thus the length of a
bit-vector may vary at each execution. The second assumption (the
bits of a configuration are mutated uniformly) does not hold either in
Algorithm 3. Given a bit-vector �⃗� defined in the current configuration,
our guided search algorithm allows both small perturbations of �⃗� (i.e.,
changing an arbitrary single bit of �⃗�) and larger perturbations of �⃗�.
The former is to exploit the current configuration, and the latter is to
explore other possible configurations. The combination of these (the
size of a configuration and the degree of perturbation may vary) makes
it non-trivial to compute 𝑞(𝑆∗

|𝑆) and 𝑞(𝑆|𝑆∗). In this section, we show
how we address this challenge.

Like Angelix, FAngelix can fix two different kinds of defect classes:
conditional bugs (where a bug fix requires changing conditional ex-
pressions) and assignment bugs (where a bug fix requires changing the
right-hand-side expression of an assignment statement). In the rest of
this section, we describe how we fix conditional bugs (Section 3.1)
and assignment bugs (Section 3.2). We also describe optimization
techniques used in our implementation (Section 3.3).

3.1. Conditional bugs

To fix a conditional bug, Angelix and FAngelix change the original
Boolean values of the conditional branches in an attempt to find an
angelic path. Unlike Angelix, which uses symbolic execution to find all
angelic paths that can be found in a given bound, FAngelix uses MCMC
sampling to search for a single angelic path. More specifically, for a
given suspicious program location containing a conditional expression
𝑒, we first monitor which branch directions are executed at that pro-
gram location whenever 𝑒 is executed during program execution. We
store this sequence of Boolean values representing branch directions
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Algorithm 3 The specification inference algorithm of FAngelix
Input: program 𝑃
Input: test case (𝐼, 𝑂𝑒) // 𝐼 : input, 𝑂𝑒: expected output
Input: a sorted set of locations 𝐿 of suspicious conditional expressions
Input: cost function Cost
Output: an angelic path 𝜋
1: /* Extract the original output 𝑂1 and */
2: * the value trace of 𝐸 denoted with 𝑆 */
3: 𝑂1, 𝑆 ← Run(𝐼, 𝐿)
4: 𝐶1 ← Cost(𝑂1, 𝑂𝑒) // 𝐶1: initial cost
5: for 𝑙 ∈ 𝐿 do
6: /* Phase 1: Initialization */
7: 𝑆 ← 𝑆[𝑙] // 𝑆: initial configuration for 𝑙
8: 𝑂,𝐶 ← 𝑂1, 𝐶1
9: 𝑁 ← 0 // 𝑁 : the number of trials

10: /* Phase 2: Search for an angelic path */
11: while 𝑂 ≠ 𝑂𝑒 ∧ Continue(𝑁,𝐶) do
12: /* perform MCMC sampling */
13: 𝑆′ ← Propose(𝑆)
14: 𝑂,𝑆∗ ← Run(𝐼, 𝑆′)
15: 𝐶∗ ← Cost(𝑂,𝑂𝑒)
16: if Accept(𝐶,𝐶∗) then
17: 𝑆,𝐶 ← 𝑆∗, 𝐶∗

18: end if
19: 𝑁 ← 𝑁 + 1
20: end while
21: /* Phase 3: Post-processing */
22: if 𝑂 = 𝑂𝑒 then
23: 𝑆1 ← 𝑆[𝑙] // the original buggy configuration for 𝑙
24: 𝑆† ← Refine(𝑆, 𝑆1)
25: return 𝑆†

26: end if
27: end for
28: return ⊥ // inference failure

Fig. 4. An example of a wrapper function and a configuration.

s a bit-vector (1 representing true and 0 representing false). We then
andomly mutate the current bit-vector (e.g., 1110 can be mutated to
010) and store it as a configuration file. In the next program execution,
e force the execution path to follow the branch directions as specified

n the configuration file.
For each execution, we record the involved cost using a user-

rovided cost function, and use this cost to guide the search for an
5

m

angelic path. More specifically, if the cost obtained using a new config-
uration 𝑆 is smaller than the cost obtained last, we update the current
configuration to 𝑆 so that 𝑆 can be mutated next time. Otherwise, we
iscard 𝑆 with a high probability 𝑝 or accept 𝑆 as the next configuration

with probability 1 − 𝑝.
There is no need to use symbolic execution to implement our

MCMC-based approach. The sample space is restricted to a set of bit-
vectors, and we explore the sample space using fast native execution in
the following way.3 We transform a given buggy program to wrap each
suspicious expression with a wrapper function. Fig. 4(a) shows an ex-
ample. During runtime, a wrapper function returns a value as specified
in its matching configuration. As an example, the configuration shown
in Fig. 4(b) specifies that the suspicious expression 𝑒 located at location
10-7-10-11 should return 1, 1, 0, and 0 in sequence, one by one, as 𝑒 is
encountered during execution. In the following subsections, we provide
a more detailed description of our algorithm.

3.1.1. Configurations
We search for an angelic path by repeatedly mutating configura-

tions. We define a configuration as a singleton dictionary {𝑙 ∶ [0, 1]+}
where 𝑙 represents the program location for a suspicious conditional
expression, and [0, 1]+ denotes a bit-vector whose length is at least
1. Fig. 4(b) shows an example of a configuration. The 𝑖th bit of the
bit-vector in a configuration dictates which Boolean value should be
used during runtime at the 𝑖th occurrence of suspicious conditional
expression at location 𝑙.

As an initial configuration, we use the configuration observed when
running the original buggy program 𝑃 with a given test input 𝐼 . While
running 𝑃 with 𝐼 , we monitor and record which branch is taken at each
evaluation of a suspicious expression. Note that a set of locations 𝐿 for
suspicious conditional expressions is part of the input to Algorithm 3.
FAngelix obtains 𝐿 by performing statistical fault localization, and 𝐿 is
sorted in a descending order based on the suspiciousness scores of the
locations in 𝐿.

3.1.2. Overall procedure
The loop between line 5 and 27 describes the main procedures

of our algorithm and consists of the three phases. In the first phase
(lines 7–9), we initialize variables including 𝑆 (which holds the current
configuration), 𝑂 (which holds the current output), 𝐶 (which holds the
current cost), and 𝑁 (which holds the number of trials). Variables 𝑆,𝐶,
and 𝑂 are initialized with the configuration, output, and cost obtained
from the execution of the original buggy program.

In the second phase, we search for an angelic path via MCMC
sampling. In the while loop between lines 11 and 20, we repeat to
perform the following. First, we mutate the current configuration 𝑆
into 𝑆′ by calling Propose (line 13). Then, we run the program with
𝑆′ and obtain output 𝑂 with which we compute the cost 𝐶∗ associated
with 𝑂. Lastly, we decide whether to update the current configuration
by calling Accept (line 16).

We perform the last phase if an angelic path is found. Note that in
an angelic path, the obtained output 𝑂 equals the expected output 𝑂𝑒.
We post-process the obtained angelic path by calling Refine (line 24),
which performs delta debugging to find an angelic path closest to the
initial configuration. In the remaining, we describe each step in more
detail.

3 The comparison between the expected and actual output is performed
irectly by running tests natively, unlike in Angelix where the comparison is
ade via symbolic execution.
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3.1.3. Proposing the next configuration
The Propose function in line 13 proposes the next configuration 𝑆′

by mutating the current configuration 𝑆. Given 𝑆 defined as {𝑙 ∶ �⃗�}
where 𝑙 and �⃗� represent the location of the suspicious expression and
its bit-vector, respectively, we choose either to flip one bit of �⃗� with a
probability 𝑝1, or to flip random 𝑛 bits of �⃗� where 1 < 𝑛 ≤ |�⃗�| with the
probability 1 − 𝑝1. In our experiments, we use 0.5 for 𝑝1. This design
is to give a higher probability for a one-bit flip than other numbers of
flip while still allowing to flip more than one bit. When it is chosen to
flip 𝑘 bits, we choose 𝑘 bits of �⃗� in a uniform manner. For example, if
the size of a bit-vector is 𝑛, then each bit has a chance of a flip with
probability 𝑘∕𝑛.

3.1.4. Dynamic adjustment of a configuration
When the next configuration 𝑆′ is generated by mutating 𝑆, the

length of the bit-vector of 𝑆′, which we denote with |𝑆′
|, is the same

as |𝑆|. However, when the program under repair is executed with 𝑆′,
the current suspicious location may be executed a different number of
times than |𝑆′

|. We need to factor in the actual number of times the
current suspicious location is executed at runtime.

A naive sampling approach would be to fix the size of a bit-vector
to 𝑁 . In this approach, only the first 𝑘 bits, where 𝑘 < 𝑁 , are used
when the current suspicious expression is executed 𝑘 times, and the
remaining bits are ignored. However, this approach can unnecessarily
increase the size of the search space if 𝑁 is larger than is necessary.
On the contrary, if 𝑁 is smaller than is necessary, the 𝑘th occurrences
of the suspicious expression where 𝑘 > 𝑁 cannot be controlled with a
configuration.

To avoid these problems, we adjust 𝑆′ into 𝑆∗ where |𝑆∗
| is the

same as the actual number of times the current suspicious expression
is executed at runtime. More specifically, we run the test with 𝑆′ and
record the trace of the values of expression 𝑒 in the current suspicious
location 𝑙. At runtime, the values specified in 𝑆′ are used in sequence
until 𝑒 is executed |𝑆′

| times. After all bit values specified in |𝑆′
| are

exhausted, we return a random bit value whenever 𝑒 is executed. In
case 𝑒 is executed less than |𝑆′

| times, the trace of 𝑙 only contains the
bit values that are actually used. We extract an adjusted configuration
𝑆∗ from the runtime trace of 𝑙 (line 14).

Note that the ergodicity of proposals necessary for MCMC sampling
is satisfied in our approach. That is, any feasible configuration corre-
sponding to a real execution path in the search space can be obtained
through a series of proposals (i.e., calling the Propose function) and test
execution (i.e., calling the Run function).

3.1.5. Measuring the cost of a configuration
To perform a guided search using MCMC sampling, we measure the

cost of each configuration (line 15). Ideally, we want to measure the
distance between the execution path associated with 𝑆∗ and an angelic
path. However, since an angelic path is not known in advance, we
instead measure a surrogate distance, using a user-provided project-
specific cost function Cost. A cost function essentially measures the
distance between the expected output 𝑂𝑒 with the actual output 𝑂
obtained when configuration 𝑆∗ is used.

3.1.6. Updating the current configuration
Our guided search is performed through a series of updates of con-

figurations. We update a configuration using the Metropolis–Hastings
algorithm as follows. We compare the cost 𝐶∗ obtained when a new
configuration 𝑆∗ is used with the current cost 𝐶. If 𝐶∗ < 𝐶, we accept
𝑆∗ as the new current configuration. Otherwise, we reject 𝑆∗ and keep
the current configuration 𝑆 with probability 𝑝 < 1. The reason why
we do not reject 𝑆∗ with probability 1 is to avoid being stuck in a local
minimum. The rejection probability increases as the difference between
𝐶∗ and 𝐶 increases. More concretely, we use the following cost-based
Metropolis–Hastings acceptance probability mentioned in Section 2.

𝛼(𝑆 → 𝑆∗) = min
(

1, exp (−𝛽 ⋅ 𝑘) ⋅
𝑞(𝑆|𝑆∗)

)

, (4)
6

𝑞(𝑆∗
|𝑆) 0
Fig. 5. Examples of cases where |𝑆| ≠ |𝑆∗
|.

where 𝛽 is a configurable annealing constant (we use 0.8 in our exper-
iment), and 𝑘 = Cost(𝑆∗) − Cost(𝑆). Notation 𝛼(𝑆 → 𝑆∗) represents the
cceptance probability which dictates the probability of accepting 𝑆∗

s the next current configuration when the current configuration is 𝑆.
he value of 𝑘 shows the difference between Cost(𝑆∗) and Cost(𝑆).

In Eq. (4), 𝑞(𝑆∗
|𝑆) denotes the probability of transforming 𝑆 into

∗ using the Propose function (where 𝑆 is transformed into 𝑆′) and
he Run function (where 𝑆′ is transformed into 𝑆∗). If we assume
hat the sizes of the bit-vectors in 𝑆 and 𝑆∗ are equivalent to each
ther, and the bits of 𝑆 are mutated uniformly, computing 𝑞(𝑆∗

|𝑆) and
(𝑆|𝑆∗) is straightforward. For example, the probability of changing
onfiguration 00 to a new configuration 01 is simply 1∕4. However,
either assumptions hold in our case. The first assumption (the sizes
f the bit-vectors in 𝑆 and 𝑆∗ are equivalent to each other) does not
old because depending on an execution path, the suspicious expression
nder consideration may be executed a different number of times. The
econd assumption (the bits of a configuration are mutated uniformly)
oes not hold either in our algorithm, as described in Section 3.1.3.
iven a bit-vector �⃗� defined in the current configuration, our guided

earch algorithm allows both small perturbations of �⃗� (i.e., changing
n arbitrary single bit of �⃗�) and larger perturbations of �⃗�.

We compute 𝑞(𝑆∗
|𝑆) differently depending on various situations.

irst, we compute 𝑞(𝑆∗
|𝑆) as follows when |𝑆∗

| = |𝑆|. Note that when
𝑆∗

| = |𝑆|, it also holds that 𝑆∗ = 𝑆′. Our Propose function chooses
ither to flip 1 bit with probability 𝑝1 or to flip 𝑛 bits, where 1 < 𝑛 ≤ |𝑆|,
ith probability 1 − 𝑝1, as mentioned in Section 3.1.3. Given 𝑆 and 𝑆′

here 𝑆′ = Propose(𝑆), suppose that 𝑘 bits, where 𝑘 > 1, are different
etween 𝑆 and 𝑆′. The probability of flipping these particular 𝑘 bits
an be computed as follows where we assume that |𝑆| = 𝑙:

𝑙 − 1)−1 ⋅
(

𝑙
𝑘

)−1
⋅ (1 − 𝑝1), (5)

here (𝑙 − 1)−1 is the probability of choosing number 𝑘 between 2 and
(inclusive), the second factor,

( 𝑙
𝑘

)−1, is the probability of choosing
he particular combination of the 𝑘 bits among 𝑙 bits, and the last
actor, (1 − 𝑝1), is the user-defined probability of flipping more than
ne bit. Meanwhile, if only one bit is different between 𝑆 and 𝑆′, the
robability of transforming 𝑆 into 𝑆′ is

−1 ⋅ 𝑝1, (6)

here 𝑙−1 represents the probability of flipping the particular one bit
hose value is different between 𝑆 and 𝑆′, and 𝑝1 is the user-defined
robability of flipping one bit.

If |𝑆∗
| > |𝑆|, this implies that the current suspicious expression

s executed more number of times than is specified in 𝑆′ where 𝑆′ =
ropose(𝑆). Fig. 5(a) shows such an example where 𝑆, 𝑆′ and 𝑆∗ are

′
10, 111, 11110, respectively, and the common bits between 𝑆 and
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𝑆∗ are underlined. In this case, the transformation probability can be
computed as follows.

𝑞(𝑆∗
|𝑆) = 𝑞(𝑆′

|𝑆) ⋅ (1∕2)(|𝑆
∗
|−|𝑆|) (7)

Note that 𝑞(𝑆′
|𝑆) can be computed using Eqs. (5) or (6), since

𝑆′
| = |𝑆|. Meanwhile, (1∕2)(|𝑆∗

|−|𝑆|) represents the probability of ob-
aining the trailing bit sequence of 𝑆∗ by random bit value generation
uring runtime (see Section 3.1.4). In our example, the probability of
enerating a trailing bit sequence 10 is 1/4.

Lastly, if |𝑆∗
| < |𝑆|, this implies that the current suspicious ex-

ression is executed less number of times than is specified in 𝑆′ where
′ = Propose(𝑆). Fig. 5(b) shows such an example where the common
its between 𝑆′ and 𝑆∗ are underlined. In this example, there are two
ossibilities of 𝑆′, i.e., 0100 and 0101. Notice that the first three bits
re 010 in common, and only the last bit is different. Considering these
wo possibilities, we compute the transformation probability as follows.

(𝑆∗
|𝑆) =

∑

𝑆′∈𝐸𝑥𝑡(𝑆∗)
𝑞(𝑆′

|𝑆), (8)

here function 𝐸𝑥𝑡 extends the given 𝑆∗ to a set of all possible
onfigurations 𝑆′ where the first |𝑆∗

| bits of 𝑆′ is the same as 𝑆∗, and
𝑆′

| = |𝑆|. In our running example, 𝐸𝑥𝑡(010) = {0100, 0101}. Recall that
(𝑆′

|𝑆) can be computed using Eqs. (5) or (6).
We compute 𝑞(𝑆|𝑆∗) of Eq. (4) in a symmetric way to 𝑞(𝑆∗

|𝑆). Note
that 𝑞(𝑆|𝑆∗) equals 𝑞(𝑆∗

|𝑆) if |𝑆∗
| = |𝑆|, and the following simplified

quation is used.

(𝑆 → 𝑆∗) = min (1, exp (−𝛽 ⋅ 𝑘)) (9)

.1.7. Stopping investigation
We stop investigating the current suspicious expression in either of

he following three cases. First, we stop investigation when an angelic
ath is found, which is indicated by the observation that 𝑂 = 𝑂𝑒
here 𝑂 and 𝑂𝑒 represent actual and expected output, respectively (see

ine 11). Second, we stop investigation when the current number of
ampling trials 𝑁 exceeds the user-defined maximum number of sam-
ling trials 𝑁𝑚𝑎𝑥. Lastly, we also stop investigation when no reduction
n the cost is observed for the configurable number of times. This is
o avoid wasting resources when no progress is observed. The Continue
unction of Algorithm 3 at line 11 returns false when the latter two
ases happen.

.1.8. Refining an angelic configuration
One potential drawback of Algorithm 3 is that if the first found

ngelic path is not correct, an incorrect patch is synthesized. Note that
ngelix [8] mitigates this problem by looking for multiple angelic paths,
oping that one of them is correct and the correct one is used for
atch synthesis.4 However, we do not take this approach to expedite
he repair process.

To mitigate the problem, we post-process the obtained angelic con-
iguration with the Refine function (line 24). Recall that a configuration
onsists of the bit-vector for a suspicious program location. Given the
onfiguration 𝑆 for the discovered angelic path (we call such 𝑆 an
ngelic configuration) and the initial configuration 𝑆1 obtained from
he original buggy execution path, we compare 𝑆 and 𝑆1 to find
inimal bit changes required for 𝑆1 to pass the given test. In other
ords, we look for an angelic path that is closest to the original buggy
xecution path, similar to the minimal repair heuristics [9,20] that is
idely used in the literature of program repair.

We find minimal changes of bits using delta debugging [17]. More
recisely, we look for a 1-minimal angelic configuration (see Defini-
ion 2), employing the 1-minimality of delta debugging. That is, given a
-minimal angelic configuration 𝑆† containing a bit-vector �⃗�†, changing

4 This hypothesis does not always hold as we report in Section 5.2.
7

Fig. 6. An example of a runtime trace of our customized symbolic execution of
FAngelix which records Boolean values taken in program locations 𝐿𝑖.

any single bit of �⃗�† at the 𝑖th position to the different bit value that
appears at the 𝑖th position of the original buggy configuration makes
the modified configuration non-angelic.

Definition 2 (1-minimal Angelic Configuration). Given the original buggy
configuration 𝑆1 for a suspicious conditional expression 𝑒 and an angelic
onfiguration 𝑆† for 𝑒, we say that 𝑆† is 1-minimal if ∀𝑖 s.t. 1 ≤ 𝑖 ≤ 𝐿(�⃗�) ∶
Run(𝐼, 𝑆†[𝑒 ∶ �⃗�†[𝑖] ↦ �⃗�1[𝑖]]) ≠ 𝑂𝑒 holds where �⃗�† and �⃗�1 denote the bit-
vector of 𝑆† and 𝑆1, respectively, and 𝐿(�⃗�) and 𝑂𝑒 denote the length of �⃗�
and an expected output, respectively. Notation 𝑆†[𝑒 ∶ �⃗�†[𝑖] ↦ �⃗�1[𝑖]] denotes
the modified configuration of 𝑆† in which the 𝑖th bit of �⃗�† is replaced with
�⃗�1[𝑖].

If |�⃗�†| > |�⃗�|, the extra trailing bits in �⃗�† may overfit to a given test.
Inspired by decision tree pruning [22,23], we prune out these trailing
bits of the obtained 1-minimal angelic configuration. In our experi-
ments, this heuristic helps with generating correct patches (see Sec-
tion 5.2).

3.2. Assignment bugs

When fixing a conditional bug, FAngelix eliminates the use of sym-
bolic execution by using MCMC sampling instead. This is possible
because the angelic value for each occurrence of a conditional expres-
sion is restricted to either true or false. However, the angelic value
for the RHS (right-hand-side) expression of an assignment statement,
in general, cannot be restricted to a small number of values. For this
reason, FAngelix uses symbolic execution to fix an assignment bug, as in
Angelix.

To fix a suspicious assignment x = 𝐸 where 𝐸 represents an RHS
expression, both Angelix and FAngelix replace 𝐸 with a symbolic variable
𝛼. Then, at the end of a symbolic execution path, the angelic value of
𝐸 can be obtained by solving a constraint, 𝑝𝑐 ∧ 𝑂𝑎 = 𝑂𝑒, where 𝑝𝑐
represents the path condition of the execution path, and 𝑂𝑎 and 𝑂𝑒
represent an actual output and an expected output, respectively. Note
that 𝑝𝑐 and 𝑂𝑎 may involve the injected symbol 𝛼.

If the injected symbol 𝛼 does not flow into the conditional expres-
sions of the program under repair, a single symbolic execution path is
executed, and a patch specification is obtained by solving 𝑝𝑐∧𝑂𝑎 = 𝑂𝑒.
However, if the injected symbol flows into the conditional expressions
of the program, path splits may occur, spawning multiple symbolic
execution paths. In this case, FAngelix performs differently from Angelix.
While Angelix explores all symbolic execution paths within a given
bound, FAngelix performs a guided search for an angelic path.

To show how FAngelix works, let us assume that an injected symbol
flows into conditional expression 𝐶𝑖 in program location 𝐿𝑖 of file
foo.c. Note that during symbolic execution, both branches of 𝐶𝑖 may
become feasible, and FAngelix records which branch of 𝐶𝑖 is taken along
a symbolic execution path. Fig. 6 shows an example where monitored
values in each 𝐿𝑖 are recorded as a bit-vector. Note that FAngelix
terminates symbolic execution once an execution path reaches the end
of the program instead of performing backtracking and exploring other
symbolic execution paths.

Using a recorded bit-vector as a configuration, FAngelix performs
a guided search in the same way a conditional bug is handled using
Algorithm 3. More specifically, FAngelix randomly mutates the current
configuration and uses it in the next session of the customized symbolic
execution. When the suspicious branch location is executed, FAngelix
takes branches as specified in the configuration during symbolic ex-
ecution. Also, the cost of each symbolic execution path is measured



Information and Software Technology 146 (2022) 106865J. Yi and E. Ismayilzada

e
R

3

o
A
r
c
t

3

a
r
s
l
s
s
𝑤
c
a
e
m
b
m
w
a
o

3

P
d
A
i
(
t
t
o

4

e
a
d
c

4

i
w
u
e
s
d
w

R

R

R

R

R

4

C

C

C

t
p
1
s
L
a
T
3
i
s
g
R

u

to decide whether to update the current configuration, as done for
conditional bugs. The only major difference from how conditional bugs
is handled is that constraint 𝑝𝑐 ∧ 𝑂𝑎 = 𝑂𝑒 is extracted using symbolic
xecution, which is used to extract angelic values for the suspicious
SH expression, as done in Angelix.

.3. Implementation and optimization

We implement our guided specification inference algorithm on top
f PyMC3.5 We plug our MCMC-sampling-based implementation into
ngelix by replacing its specification inference module with ours. To
epair the RHS expressions of assignments in a guided fashion, we also
ustomize KLEE. Our implementation contains the two optimization
echniques described in the following.

.3.1. All-in-one wrapper functions
Given a suspicious expression 𝑒, we wrap 𝑒 in a wrapper function 𝑤,

s shown in Fig. 4(a). A wrapped expression 𝑤(𝑒,…), where the ellipsis
epresents additional values we pass to 𝑤 such as location information,
hould behave differently at each phase of repair. During the fault
ocalization phase, 𝑤(𝑒,…) should return the value of 𝑒, while at the
ame time, the location information of 𝑒 should be recorded to perform
tatistical fault localization. During the specification inference phase,
(𝑒,…) should return values as specified in the configuration of 𝑒 in

ase 𝑒 is a conditional expression. If 𝑒 is the RHS expression of an
ssignment, 𝑤(𝑒,…) should return a fresh symbol to perform symbolic
xecution as described in Section 3.2. One possible way to support
ultiple behaviors of a wrapper function is to transform the original

uggy file differently at each repair phase, as done in Angelix. To avoid
ultiple compilations followed by multiple program transformations,
e combine all required functionalities of a wrapper function into
single wrapper function and perform program transformation only

nce.

.3.2. Caching and bit operations
While randomly generating a series of configurations using the

ropose function, the same configurations may be generated. To avoid
uplicate test execution, we cache test results and their associated costs.
lso, to store a bit-vector efficiently, we maintain bit-vectors using

ntegers. For example, a bit-vector 0101 is represented with a pair
5, 4) where 5 is the decimal number equivalent to 0101 and 4 is
he number of binary digits required for the bit-vector. We perform
he manipulation and comparison of bit-vectors through efficient bit
perations.

. Experimental setup

In this section, we describe our research questions (Section 4.1),
xperimental subjects (Section 4.2), experimental setup (Section 4.3),
nd defect classes we consider (Section 4.4). We also describe how we
etermine the correctness of patches (Section 4.5) and how we define
ost functions (Section 4.6).

.1. Research questions

Given that our method, FAngelix, replaces the patch specification
nference module of Angelix in an attempt to speed up the repair process,
e evaluate FAngelix in comparison with Angelix. More recent tools
sing constraint-based approaches such as S3 [10] and SOSRepair [21]
ither repair Java programs [10] (FAngelix repairs C programs) or run
lowly (as mentioned in [21], ‘‘efficiency is not a focus of SOSRepair’s
esign’’), and we do not compare with them in this work. In this work,
e ask the following six research questions.

5 https://docs.pymc.io/.
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RQ 1 (Repairability). Does FAngelix generate as many patches as An-
gelix? Note that unlike Angelix, FAngelix favors early termina-
tion over exhaustive search when no progress is observed (see
Section 3.1.7). Does this policy negatively affect the overall
repairability?

Q 2 (Patch quality). Does FAngelix produce correct patches as often
as Angelix? Note that while we reuse the patch synthesis module
of Angelix, a patch specification obtained from our method can
be different from that of Angelix, which may affect the quality of
synthesized patches.

Q 3 (Efficiency). Does FAngelix generate patches faster than Angelix?
This is the primary research question of this work.

Q 4 (Early failure). When a patch is failed to be generated, does
FAngelix report repair failure faster than Angelix? It is desirable
for a repair tool to terminate as early as possible, if the tool
cannot generate a patch for a given buggy version.

Q 5 (Cost functions). How effective are our cost functions in terms
of performing a search for patch specification? Does the use of
our cost functions improve search efficiency?

Q 6 (Comparison with the G&V approach). How is the runtime
performance of FAngelix compared to a G&V tool? While our
main objective in this work lies in speeding up constraint-based
program repair, it would be worthwhile to compare the runtime
performance of FAngelix with that of the G&V approach.

.2. Experimental subjects

We use the following criteria to collect experimental subjects.

1. Experimental subjects should contain real-world bugs.

2. Experimental subjects should be able to be run by FAngelix and An-
gelix. Both tools use KLEE [6], which currently does not support
arbitrary C projects.

3. The bugs of the experimental subjects should be in the defect class
of FAngelix and Angelix. Both tools can handle the same defect
classes, i.e., conditional bugs and assignment bugs.

We extract our subjects from the ManyBugs benchmark [24], part of
he BugZoo [25] platform. The same benchmark has been used in multi-
le previous works [8,21,26–30]. The ManyBugs benchmark consists of
59 buggy versions of 7 kinds of programs6 containing real bugs, which
atisfies C1. Among the 7 kinds of programs, we exclude Python and
ighttpd since we could not run them with KLEE (see C2). These subjects
re also excluded in previous work on Angelix for the same reason [8].
o meet C3, we use the previous work on Angelix [8] which identified
2 bugs in the defect classes of Angelix, and our experimental subjects
nclude all of them. We relax C3 and add 18 more versions randomly
elected from the ManyBugs benchmark. While Angelix and FAngelix fail to
enerate patches for these additional versions, we use them to answer
Q4 (RQ on early failure).

Table 1 summarizes the 50 versions of the 5 different subjects we
sed for the experiments.

6 fbc is excluded in the latest ManyBugs benchmark since it cannot be run
n a modern 64-bit Linux system.

https://docs.pymc.io/


Information and Software Technology 146 (2022) 106865J. Yi and E. Ismayilzada

t
a
w
o
a

Table 1
Experimental subjects.

Subject LoC Tests Versions

Wireshark 2814k 63 5
PHP 1046k 85 21
Gzip 491k 12 4
GMP 145k 146 2
Libtiff 77k 78 18

4.3. Tool configurations and experimental setup

For a fair comparison between FAngelix and Angelix, we use the same
default fault localization formula (jaccard [31]) of Angelix for both
tools. Similarly, we reuse the same synthesizer options used in earlier
work on Angelix [8] for both tools. Note that both tools share the same
modules for fault localization and patch synthesis, and only the patch
specification modules are different.

When comparing the runtime performance of FAngelix and Angelix, it
is crucial to control the patch specification space of the tools in a fair
manner. Note that Angelix controls patch specification space with 𝑁𝑓𝑜𝑟𝑘𝑠,
the maximum number of forks of KLEE (a new symbolic execution path
is explored for each fork), whereas FAngelix controls the same with
𝑁𝑚𝑎𝑥, the maximum number of sampling trials. We use the same value
for 𝑁𝑓𝑜𝑟𝑘𝑠 and 𝑁𝑚𝑎𝑥 to assign the two tools the same patch specification
space.

All our experiments were performed on Intel Xeon-Gold-6154 3.00
GHz CPU with Ubuntu 18.04 OS. Since FAngelix takes a random ap-
proach during the repair process, we report an average running time
after running FAngelix with each version 10 times. For a fair comparison,
we also run Angelix 10 times for each version. We set the timeout to 4 h
for Angelix, which is about 4 times longer than the maximum time taken
for FAngelix to generate a repair (3940 s).

To answer RQ6, we need to run a G&V repair tool over our ex-
perimental subjects. While many repair tools using the G&V approach
have been introduced recently (e.g., [4,5,32–34]), most of these tools
work for Java programs. Since recent repair tools such as [35] are not
publicly available, and the download URL for SPR [27] and Prophet [28]
was down at the time of conducting this research, we ran GenProg [26]
available through the BugZoo platform [25] using its pre-configured
configuration. We set the timeout as 4 h and run each version 10 times.

4.4. Defect classes

Both Angelix and FAngelix can fix the following two kinds of bugs:
conditional bugs and assignment bugs. In our experiments, we start
with the conditional-bug mode first, and only if a patch is failed
to be generated, we perform repair with the assignment-bug mode.
We run the conditional-bug mode before the assignment-bug mode
because (1) the conditional-bug mode usually terminates faster than
the assignment-bug mode, and (2) the same ordering was used in the
previous study [8]. In this study, we consider only first-order repair
(fixing a single program location). A study on the effect of a guided
algorithm on high-order repairs (fixing multiple program locations) is
left as future work.

4.5. Patch correctness

We consider a generated patch correct if the patch is syntactically or
semantically equivalent to the developer-provided patch in the bench-
mark. The same approach has been used in other studies [8,27,28].
Since the patch space of FAngelix is identical with that of Angelix, we
reuse the patch analysis results of Angelix.7

7 https://angelix.io/patches.html.
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Fig. 7. The snippet of PHP test bug54039 where the FILE segment and the EXPECT
segment show the input and the expected output of the test, respectively.

4.6. Cost functions

FAngelix requires a cost function as part of input. We use either of
he following two kinds of cost functions. First, when the output of

test is sizeable (an exit code such as 0 is not considered sizeable),
e compute the distance between the expected output and the actual
utput of a test. For example, Fig. 7 shows a PHP test that receives
n input PHP program (shown in the FILE segment) and compares the

interpretation result of the input program with the expected output
(shown in the EXPECT segment). In PHP, we define a cost function as
the string distance (Levenshtein distance) between the actual output
and the expected output specified in the test. In Gzip and Wireshark, we
similarly define cost functions using string distance. In Libtiff where
tests manipulate image files, we compare the distance between an
obtained image output and the expected image of a test.

In GMP where tests simply output either 0 or 1, we use the second
kind of cost functions. In GMP, a test consists of multiple sub-tests (for
example, the reuse test consists of 27 526 sub-tests), and once a sub-
test fails, the remaining sub-tests are not executed. Exploiting this fact,
we define a cost function as the number of remaining sub-tests that are
not executed.

In both kinds of cost functions, we add a penalty value to an
obtained cost value when the program under repair crashes, in order
to avoid crash-causing configurations.

5. Experimental results

Table 2 shows the results of our experiments. The first and second
columns show the version and the tool, respectively, while the remain-
ing columns show the experimental results, which we explain in this
section. In the version column, the initial letters stand for the 5 subjects
in our benchmark (Libtiff, GMP, PHP, Wireshark, and GZIP).

5.1. RQ1: Repairability

As shown in the third column of Table 2, FAngelix consistently
generates patches (10 times out of 10 trials) from 28 versions. This
result implies that our approach maintains the effectiveness of the
repair, despite the use of the early-termination policy. In fact, Angelix
failed to generate a patch in 4 versions (M-13421, P-fefe9, W-37171,
and Z-3fe0c). In P-fefe9, Angelix failed to find an angelic forest within
the timeout. In M-13421, Z-3fe0c and W-37171, Angelix succeeded in
finding angelic forests, but it failed to synthesize valid patches passing
all tests using the obtained angelic forests.8

8 In the original Angelix experiment, patches were generated from these four
ersions for which customized configurations were used.

https://angelix.io/patches.html
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Table 2
Experimental results.

Version Tool Patch Correct Time (s) Version Tool Patch Correct Time (s)

found patch Median IQR Speedup found patch Median IQR Speedup

L-09e82 Angelix 0 0 330 24
×1.45 P-01745 Angelix 10 0 916 12

×4.48L-09e82 FAngelix 0 0 227 10 P-01745 FAngelix 10 0 205 4

L-15632 Angelix 10 0 564 4
×1.1 P-0de2e Angelix 0 0 6 530 9315

×6.9L-15632 FAngelix 10 0 512 91 P-0de2e FAngelix 0 0 947 1526

L-2e8b2 Angelix 0 0 263 7
×1.3 P-11941 Angelix 10 0 337 21

×1.73L-2e8b2 FAngelix 0 0 202 47 P-11941 FAngelix 10 0 195 2

L-37133 Angelix 10 10 1 903 7
×1.4 P-14738 Angelix 0 0 676 590

×1.55L-37133 FAngelix 10 10 1 355 65 P-14738 FAngelix 0 0 436 599

L-3b848 Angelix 10 0 8 235 326
×2.18 P-187eb Angelix 10 0 316 9

×1.58L-3b848 FAngelix 10 10 3 770 106 P-187eb FAngelix 10 0 200 3

L-60747 Angelix 0 0 4295 7681
×14.31 P-1f499 Angelix 0 0 567 391

×1.41L-60747 FAngelix 0 0 300 173 P-1f499 FAngelix 0 0 403 529

L-64062 Angelix 0 0 14 400 0
×14.75 P-2a696 Angelix 0 0 2 792 1973

×2.85L-64062 FAngelix 0 0 976 887 P-2a696 FAngelix 0 0 979 653

L-6746b Angelix 0 0 14 400 0
×16.1 P-53204 Angelix 0 0 1 818 623

×11.47L-6746b FAngelix 0 0 894 375 P-53204 FAngelix 0 0 158 784

L-764db Angelix 10 0 377 1
×1.09 P-5bb0a Angelix 0 0 5 106 6162

×6.55L-764db FAngelix 10 0 348 3 P-5bb0a FAngelix 0 0 779 1172

L-827b6 Angelix 0 0 1 602 100
×6.48 P-63673 Angelix 10 4 451 56

×2.45L-827b6 FAngelix 0 0 247 122 P-63673 FAngelix 10 10 184 1

L-96a5f Angelix 10 0 405 5
×1.12 P-70075 Angelix 10 0 434 40

×2.1L-96a5f FAngelix 10 0 362 1 P-70075 FAngelix 10 0 206 3

L-a72cf Angelix 10 0 3 600 217
×19.22 P-793cf Angelix 0 0 14 400 0

×18.9L-a72cf FAngelix 10 0 187 4 P-793cf FAngelix 0 0 762 117

L-b2ce5 Angelix 0 0 548 273
×2.39 P-8138f Angelix 10 5 415 7

×2.17L-b2ce5 FAngelix 0 0 229 54 P-8138f FAngelix 10 5 191 2

L-ce4b7 Angelix 0 0 3 068 2735
×4.03 P-86efc Angelix 0 0 1 161 161

×2.56L-ce4b7 FAngelix 0 0 762 1290 P-86efc FAngelix 0 0 453 582

L-d59e7 Angelix 0 0 1 058 537
×1.96 P-a6c0a Angelix 0 0 619 543

×1.61L-d59e7 FAngelix 0 0 539 499 P-a6c0a FAngelix 0 0 385 526

L-e8a47 Angelix 10 10 322 35
×1.16 P-b60f6 Angelix 10 0 5 047 432

×23.11L-e8a47 FAngelix 10 10 277 7 P-b60f6 FAngelix 10 0 218 9

L-eb326 Angelix 10 0 482 7
×0.92 P-d890e Angelix 10 0 2 758 71

×13.35L-eb326 FAngelix 10 0 522 35 P-d890e FAngelix 10 0 207 7

L-eec4c Angelix 10 0 3 624 186
×19.17 P-e65d3 Angelix 10 10 1 112 7

×4.95L-eec4c FAngelix 10 0 189 2 P-e65d3 FAngelix 10 10 224 15

M-13421 Angelix 0 0 4 890 22
×4.82 P-eb0dd Angelix 0 0 777 57

×1.9M-13421 FAngelix 10 10 1 015 8 P-eb0dd FAngelix 0 0 409 544

M-14167 Angelix 10 5 887 24
×1.09 P-f912a Angelix 0 0 516 17

×3.28M-14167 FAngelix 10 4 816 21 P-f912a FAngelix 0 0 158 10

W-37111 Angelix 10 0 1 223 23
×1.3 P-fefe9 Angelix 0 0 2 624 141

×2.41W-37111 FAngelix 10 0 940 64 P-fefe9 FAngelix 10 0 1 087 1812

W-37123 Angelix 0 0 8 241 160
×3.87 Z-1a085 Angelix 0 0 1 806 763

×3.95W-37123 FAngelix 0 0 2 130 3870 Z-1a085 FAngelix 0 0 457 120

W-37171 Angelix 0 0 7 624 29
×15.18 Z-3eb60 Angelix 10 0 478 211

×1.96W-37171 FAngelix 10 0 502 24 Z-3eb60 FAngelix 10 10 244 155

W-37173 Angelix 10 0 6 745 46
×14.4 Z-3fe0c Angelix 0 0 8 108 31

×10.65W-37173 FAngelix 10 0 468 4 Z-3fe0c FAngelix 10 0 761 564

W-37285 Angelix 10 0 1 811 284
×3.59 Z-a1d3d Angelix 10 0 507 340

×3.65W-37285 FAngelix 10 0 504 37 Z-a1d3d FAngelix 10 0 139 11
In our experiment, FAngelix generated patches in 4 more versions
than Angelix. Also, FAngelix consistently generates patches when
repair succeeds.

5.2. RQ2: Patch quality

The fourth column of Table 2 shows how often correct patches are
generated. FAngelix generated correct patches from 9 versions; 3 from
ibtiff, 2 from GMP, 3 from PHP and 1 from Gzip. Fig. 8 summarizes the
atch correctness results of FAngelix and Angelix. To our surprise, Angelix
10

generated correct patches in a less number of versions (i.e., 6 versions).
This is an unexpected result, considering that our goal is to improve
repair efficiency, and we reuse the patch synthesizer of Angelix. Our
investigation revealed that the exhaustive search of Angelix does not
always help generate a correct patch. Listing 1(a) shows an incorrect
Angelix patch generated for L-3b848, whereas Listing 1(b) shows a
correct patch generated from FAngelix. Note that for this buggy version,
Angelix failed to generate a correct patch. What happened is that the
exhaustive search of Angelix collects multiple angelic paths, which in-
clude not only a correct angelic path but also incorrect angelic paths
that overfit to a given test suite. Although the patch synthesizer of
Angelix synthesizes a patch that requires minimal structural changes,

both patches shown in Listing 1 involve the same amount of structural
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Fig. 8. Comparison of the number of correct patches out of 10 trials between Angelix,
Angelix, and FAngelix without using angelic configuration refinement described in
ection 3.1.8. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

Listing 1. Patches generated for L-3b848.

change (replacing one operand). This result exhibits that the exhaustive
search can confuse a synthesizer by including a spurious angelic path
in a patch specification. Our guided search does not exhibit the same
problem because it finds only one angelic path closest to the original
buggy execution path.

Recall that to find an angelic path that is closest to the original
buggy execution path, we use an angelic configuration refinement
method (see Section 3.1.8), and it turns out that this step is crucial.
If we do not use the refinement step, a correct patch for L-3b848 is not
obtained. In Fig. 8, the results of FAngelix without using the refinement
step are shown with green color. Correct patches were generated only
when the refinement step was used in three versions (L-37133, L-3b848,
and Z-3eb60).

In Z-3eb60, Angelix failed to generate a correct patch because KLEE
fails to run several positive tests that can exclude incorrect patches.
Angelix ignores tests KLEE cannot run. For this version, FAngelix fixes a
conditional expression using native execution without using KLEE. In
M-13421, timeouts occurred for Angelix, whereas FAngelix successfully
enerated patches within the same timeout. Correct patches were not
lways generated in the three versions (M-14167, P-63673, and P-
138f) in Angelix and FAngelix because the obtained individual angelic
ath is not tight enough to force only one minimal patch.

FAngelix generates correct patches more frequently than Angelix,
showing the efficacy of our configuration refinement method.

5.3. RQ3: Efficiency

The fifth and sixth columns of Table 2 show the median time
taken for each tool to terminate and the interquartile range (IQR),
respectively. Note that both tools can terminate in the following three
cases; (1) a repair is found, (2) the repair process is finished without
finding a repair, and (3) a timeout (14 400 s) occurs. The last column
of the table shows how fast FAngelix is compared to Angelix in terms of
median time. FAngelix terminates faster than Angelix across all versions
except for one version (L-eb326). In P-b60f6, FAngelix generates patches
11
23 times faster than Angelix, showing the largest speed-up. The overall
median time of FAngelix and Angelix is 229 s and 719 s, respectively.
And the overall mean time of FAngelix and Angelix is 513 s and 1790
s, respectively. On average, FAngelix generates a patch 3.5 times faster
than Angelix.

We also show in Fig. 9 the boxplots of the running time of Angelix
and FAngelix when a patch is successfully generated in FAngelix. In the x-
axis, buggy versions are annotated with the defect classes of generated
patches (‘C’ for conditionals and ‘A’ for assignments).

It is clear from our results that FAngelix generates patches signifi-
cantly faster than Angelix. We have conducted the Mann–Whitney rank
test [36] for versions repaired by FAngelix, and the running time differ-
nces are statistically significant (𝑝-value < 0.001) across all versions
xcept for three versions (L-15632, L-e8a47, L-eb326).

FAngelix generates patches significantly faster than Angelix, showing
up to x23 speed-up. On average, an order-of-magnitude speed-up is
observed.

5.4. RQ4: Early failure

Fig. 10 shows the boxplots of the running time of Angelix and FAngelix
when both tools fail to generate a patch. Across all versions, FAngelix
reports repair failure faster than Angelix. Running time differences are
statistically significant across all versions (𝑝-value < 0.001 for the
Mann–Whitney rank test) except for three versions (P-14738, P-1f499,
P-a6c0a).

FAngelix terminates the search for a patch when no progress is ob-
served. Due to the use of this early-failure policy, FAngelix terminates
earlier than Angelix, regardless of whether patches are generated or
not. However, our experimental results show that the use of an
early-failure policy does not decrease repairability.

5.5. RQ5: RQ functions

In FAngelix, the search for a patch specification is guided by a
ser-provided cost function by which the search performance can be
ffected. To obtain an initial understanding of how the cost functions
e used in the experiments affect the search performance, we compare

he repair time of FAngelix with its variance where we ignore the costs
computed by the cost function and always accept proposed configu-
rations. This variance can be viewed as using a simple generic cost
function that monotonically decreases. Recall that during MCMC sam-
pling, a proposed configuration whose cost is lower than the previous
cost is always accepted. We keep using the same Propose function in
the variance to use the same mutation operators for the configurations.
We evaluate the quality of the cost functions used in our experiments
by comparing the search performance between our cost functions and
the monotone decreasing cost function.

Fig. 11 shows the comparison results for the 28 versions for which
FAngelix generates patches. In the box plot, the ‘‘ignoreCost’’ label shows
the results from the variance. The results for Libtiff and PHP are shown
in the first two rows of the figure, and the bottom row shows the results
for GMP, Gzip, and Wireshark. In Libtiff and PHP, repair time tends to
decrease when our cost functions are used. This result suggests that
our domain-specific cost functions are effective, performing a search
more efficiently than the generic cost function. Meanwhile, in a smaller
number of cases shown in the last row, repair time tends to be similar
between the two modes (except in Z-3eb60), suggesting that our cost
functions are not effective for these cases. Our result opens up a new
research question about what cost functions are more effective than
simple cost functions (e.g., measuring output distance) we used in this
work.

In the majority of the cases we studied, patches are found faster
when our cost functions are used than when costs are ignored.
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Fig. 9. Comparison of running time between Angelix and FAngelix when a patch was successfully generated in FAngelix. Note that in the four versions marked with asterisks
M-13421, P-fefe9, W-37171, and Z-3fe0c), Angelix terminated before a timeout occurs but failed to generate a patch. Notice that the maximum y-axis values are different between
he three plots. FAngelix successfully generated correct patches in the nine versions marked with †. In the x-axis, buggy versions are annotated with the defect classes of generated
atches (‘C’ for conditionals and ‘A’ for assignments).
.6. RQ6: Comparison with the G&V approach

Fig. 12 shows the running time of GenProg in comparison with
Angelix. GenProg were successfully run in 38 versions of our subjects
GenProg did not terminate normally for the remaining 12 versions in
ur experiments), and the figure shows the results of these 38 versions.
n general, a longer running time is observed in GenProg in comparison
ith FAngelix for the majority of the versions. When compared with
edian values, GenProg performs more slowly than FAngelix in 28 out

f 38 versions (which amounts to 74%).

FAngelix, which combines guided search and the early-termination
policy, tends to generate repairs faster than GenProg.
12
6. Threats to validity and limitations

External validity. Our results may not generalize to other programs
not used in our experiments, although the ManyBugs benchmark is
currently a de facto standard benchmark for C programs. Similarly, our
comparison results may not generalize to other program repair tools,
in particular G&V program repair tools. To mitigate this threat, we
compare the repair time of FAngelix with that of GenProg [26], and we
could observe similar patterns from GenProg—as compared to FAngelix,
a longer running time is generally observed.
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Tool parameter values may also pose a threat to validity. Although
we use the same parameter values for common modules (fault local-
ization and patch synthesis) between FAngelix and Angelix, the same
parameter values may affect each tool differently. We leave it for future
work to investigate this issue.

Our result may not generalize to other cost functions not used in our
experiments. However, note that we chose cost functions that we think
are the most straightforward. All our cost functions except for 2 GMP
versions compute the distance between expected and actual output.
Our study results suggest that such simple cost functions are generally
effective in guiding a search for an angelic path. Nonetheless, finding
an optimal cost function is not in the scope of this study, which we
leave as future work.

Internal validity. There can be two possible explanations for the
speedup of our approach; (1) our guided search algorithm and (2) the
use of fast native execution instead of slow symbolic execution. In this
study, we did not assess how each of these factors affects the efficiency
of repair individually. However, we have pieces of evidence to believe
that each factor has a positive effect on efficiency. Fig. 11 shows that
out of six assignment bugs succeeded to be fixed by FAngelix, three ver-
sions (L-15632, L-eb326, and L-e8a47) are fixed faster when the cost is
used than when the cost is ignored. No visible difference is observed in
the remaining three versions (M-13421, M-14167, and Z-a1d3d). Recall
that for assignment bugs, FAngelix uses symbolic execution. These results
suggest a positive effect of our guided search. Meanwhile, FAngelix fixes
conditional bugs faster than Angelix in eight versions (L-96a5f, L-764db,
P-70075, P-187eb, W-37173, W-37111, and W-37285), although the
use of the cost does not improve efficiency in these versions. These
results suggest a positive effect of native execution.

Usability. The fact that a user should provide a cost function can
13

threaten the usability of our approach. However, this threat can be
mitigated by writing test code in a stylized way; if expected and
actual outputs are compared using a common subroutine (e.g., equals
(actual_out, expected_out)), a cost can be obtained by replacing
the subroutine with a cost function (e.g., distance(actual_out, ex-
pected_out) which returns the distance between actual_out and ex-
pected_out).

Replicability. To mitigate the threat to replicability, we provide
our experimental scripts in the following URL: https://github.com/jyi/
fangelix.

7. Discussion

In our experiments, we perform repair for each suspicious location
one by one. However, such sequential search may not be optimal
for runtime performance. Consider Fig. 13(a) where the two loop
conditions are considered equally suspicious. In the sequential search,
resources are wasted in investigating the first correct loop condition
before investigating the second buggy loop condition. An alternative
approach is to consider both expressions simultaneously. Our approach
can easily support simultaneous search by extending the configuration
to include multiple suspicious expressions (e.g., Fig. 13(b)) and having
a group of multiple expressions investigated simultaneously.

Fig. 14(a) shows the result of simultaneous search for 9 Libtiff
versions from which patches are generated by Angelix and FAngelix.9 The
-axis of the figure shows group sizes, where group size is defined as
he number of suspicious locations that are investigated simultaneously.
eanwhile, the y-axis shows the average running time taken to gen-

rate a patch. It is observed that patches tend to be generated more
uickly in both tools as more locations are investigated simultaneously.

9 Similar patterns are also observed from other subjects.

https://github.com/jyi/fangelix
https://github.com/jyi/fangelix
https://github.com/jyi/fangelix
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Fig. 11. Comparison of repair time between FAngelix and its variant where costs are ignored. Notice that the maximum y-axis values are different between the four plots.
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However, there is a catch. Fig. 14(b) shows how the number of gener-
ated patches change as the group size increase. Our experimental result
seems to suggest a tradeoff between effectiveness and repairability,
while further investigation is left as future work.

8. Related work

8.1. Efficient patch space exploration

To efficiently explore the patch space, the following two general
methods have been used, i.e., patch prioritization and patch space
reduction. Note that most repair systems use both methods together.
The idea of patch prioritization is to rank patch candidates according
to their correctness likelihood. Prophet [28] is one of the earliest of
such approaches, and ranks patch candidates based on a probabilistic
model learned from existing patches. Similar approaches [4,32,33,37–
40] that learn a ranked model from existing patches and other sources
such as code comments (e.g., [33]) and Q&A sites (e.g., [38]) have
been proposed. A more recent approach CapGen [32] builds an effective
14

model by factoring in context information of buggy code and patch u
code into the model. Patch prioritization has also been widely used
in constraint-based repair. Directfix [20] prioritizes a patch that makes
minimal structural changes to the code, and similar approaches have
been used in other tools using various forms of minimality [8–10].

In search-based approaches such as GenProg [26] and JAFF [41],
atch prioritization is conducted via fitness functions. Each repair can-
idate is evaluated with a fitness function, and the neighborhood space
f repair candidates with higher fitness values is explored with higher
riority than the others in the subsequent repair process. GenProg uses
fitness function that returns the weighted sum of the number of

assing and failing tests; different weights are used for passing tests and
ailing tests. JAFF uses a fitness function similar to the cost functions
sed in our experiments; the distance between expected and actual
utput is measured (JAFF also measures the size difference between the
riginal and modified program). More recent works also consider other
actors in their fitness functions, such as intermediate program states
bserved during test execution [42] and likely program invariants [43].
he cost functions used in our approach are similar to the fitness
unctions used in search-based approaches; both kinds of functions are

sed to explore the search space efficiently. The main novelty of our
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t

Fig. 12. Comparison of repair time between GenProg and FAngelix for 38 versions GenProg was successfully run. Notice that the maximum y-axis values are different between
he three plots. The 21 versions failed to be repaired by GenProg are marked with ∗, and the 17 versions failed to be repaired by FAngelix are superscripted with 𝑓 . The eight

versions that are correctly fixed by FAngelix (see Section 5.2) are marked with †.
approach is in the use of cost functions in the context of constraint-
based program repair, where we use a cost function to explore the
specification space instead of the patch space.

To limit the patch space, most repair systems only use a finite
number of repair patterns which are curated manually [44] or au-
tomatically [45]. In addition, Tan et al. [46] proposed not to use
anti-patterns which often lead to overfitting patches. However, even
a finite number of patterns easily induce huge patch space [29], and
Genesis [45] addresses this issue by considering the size of the patch
space involved with each repair pattern to discard those inducing
large patch space. As a different approach, F1X [30] clusters patch
expressions in the patch space into a smaller number of equivalent
15
classes where the expressions in the same equivalent class exhibit the
same behavior for a test under consideration.

Apart from repair patterns, a large number of suspicious locations
can also enlarge the search space. While most APR systems use a fault
localization technique and try to fix a location with a higher suspicious-
ness score than the others (spectrum-based fault localization techniques
are typically used in the literature), suspiciousness scores are only
approximate values and are not necessarily accurate. To mitigate this
issue, [35] uses additional information (i.e., value ranges) to better rank
suspicious locations; that is, a location 𝐿 is more suspected if a live
variable at 𝐿 has a value 𝑣 outside the range 𝑅 where 𝑣 is obtained by
running a failing test and 𝑅 is obtained by running passing tests.
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Fig. 13. Simultaneous search for a patch specification.

Fig. 14. Efficiency vs. effectiveness (the group size indicates the number of suspicious
locations investigated simultaneously). In the top figure, log scale is used.

Constraint-based repair approaches like ours perform a staged
search; patch space is explored only after a patch specification is
obtained. Thus, exploring a patch space at a location 𝐿 is avoided if a
patch specification is not found in 𝐿. For example, consider a suspicious
statement at program location 𝐿, if (𝐸) {...}, where 𝐸 represents the
expression used in the given buggy program. The patch space for 𝐸
is explored using program synthesis only after a patch specification
for 𝐸 is obtained. Some G&V approaches [27,33,47] also perform a
staged repair similarly. FAngelix reuses the fault localization and patch
synthesis module of Angelix and hence explores the patch space in the
same way as Angelix. However, FAngelix explores specification space
differently from existing approaches for better efficiency.

8.2. Efficient specification space exploration

In constraint-based program repair, patch specification space is
clearly separated out. To explore the patch specification space, the
existing constraint-based repair approaches perform either bounded
exhaustive search using symbolic execution [8,10,18] or explore a
restricted search space as in Nopol [19]. In Nopol, given a suspicious
conditional expression 𝑒, it is assumed that 𝑒 always returns the same
boolean value at every occurrence of 𝑒. As a more advanced technique
proposed by Mechtaev et al. [48], the use of second-order symbolic
16

execution—where a symbolic variable can represent a patch candidate
expression—reduces the patch specification space. This is because a
symbolic execution path is not explored if there is no patch candidate
expression in the patch space that can satisfy the path condition.
Despite the reduction of patch specification space, their experimen-
tal results show that runtime is slower with second-order symbolic
execution than with KLEE [6] unless a path bound (the maximum
number of forks) is large (the critical bound is around 500). Mean-
while, some template-based repair approaches such as SPR [27] and
ACS [33] also infer a patch specification for conditional expressions.
These approaches, however, restrict the patch specification space by
using predicate switching that flips only one bit at a time [49] or
using similar heuristics. Furthermore, ACS considers only if conditions,
ignoring loop conditions, unlike ours. Improving a patch synthesizer
as done in ACS is orthogonal to our approach that finds a patch
specification efficiently and effectively.

8.3. Test-suite reduction

Test-driven program repair systems repeat to run tests to validate
patch candidates. Thus, test-suite reduction helps with reducing re-
pair time as shown in [35]. Our approach is orthogonal to test-suite
reduction, and can be used together with test-suite reduction.

9. Conclusion

In this paper, we have proposed a novel technique that expedites
constraint-based program repair. Our experimental results show that
our method, FAngelix, generates patches more efficiently, effectively,
and accurately than Angelix, a state-of-the-art constraint-based pro-
gram repair tool. The key enabler is our guided patch specification
inference method. Using a search-based technique (i.e., MCMC sam-
pling), we efficiently guide the search toward a patch specification.
FAngelix also reports repair failure faster than Angelix, without sacri-
ficing repairability. We conclude the paper with a couple of possible
future work directions. We considered only first-order repairs in this
work, and extending the approach to higher-order repairs is one di-
rection we plan to pursue. Also, using other meta-heuristic search
techniques other than MCMC sampling is another possible future work.
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