
Int J Softw Tools Technol Transfer (2010) 12:429–446
DOI 10.1007/s10009-010-0164-8

VSTTE 2008

Towards an industrial grade IVE for Java and next generation
research platform for JML

Patrice Chalin · Robby · Perry R. James ·
Jooyong Lee · George Karabotsos

Published online: 15 June 2010
© Springer-Verlag 2010

Abstract Tool support for the Java Modeling Language
(JML) is a very pressing problem. A main issue with cur-
rent tools is their architecture; the cost of keeping up with
the evolution of Java is prohibitively high, e.g., Java 5 has
yet to be fully supported. This paper presents JmlEclipse,
an Integrated Verification Environment (IVE) for JML that
builds upon Eclipse’s support for Java, enhancing it with pre-
liminary versions of Runtime Assertion Checking (RAC),
Extended Static Checking (ESC), Full Static Program Veri-
fication (FSPV), and symbolic execution. To our knowledge,
JmlEclipse is the first IVE to support such a full range of ver-
ification techniques for a mainstream language. We present
the original tool architecture as well as an improved design
based on use of the JML Intermediate Representation (JIR),
which helps decouple JmlEclipse from the internals of its
base compiler. As a result, we believe that JmlEclipse is eas-
ier to maintain and extend. Use of JIR as a tool exchange
format is also described.

P. Chalin (B) · P. R. James · G. Karabotsos
Dependable Software Research Group (DSRG),
Department of Computer Science and Software Engineering,
Concordia University, Montreal, QC, Canada
e-mail: chalin@dsrg.org; chalin@encs.concordia.ca

P. R. James
e-mail: perry@dsrg.org

G. Karabotsos
e-mail: g_karab@dsrg.org

Robby · J. Lee
SAnToS Laboratory, Department of Computing and Information
Sciences, Kansas State University, Manhattan, KS, USA

Robby
e-mail: robby@k-state.edu

J. Lee
e-mail: jlee@cis.ksu.edu

Keywords Program verification · Java · Integrated
verification environment

1 Introduction

The Java Modeling Language (JML) is the most popular
Behavioral Interface Specification Language (BISL) for Java.
JML is recognized by a dozen tools and used by over two
dozen institutions for teaching and/or research, mainly in the
context of program verification [40]. Tools exist to support
the full range of verification from Runtime Assertion Check-
ing (RAC) to Full Static Program Verification (FSPV) with
Extended Static Checking (ESC) in between [10]. In fact,
JML is the only BISL supported by all three of these verifi-
cation technologies.

Unfortunately, JML tools have been aging quickly.
Researchers responsible for JML tool development and main-
tenance have been unable to keep up with the rapid pace of
evolution of both Java and JML. A prime example of this
is the lack of support for Java 5, despite the fact that it was
released in 2004. Keeping up with changes in Java is very
labor-intensive; from an academic researcher’s point of view
it is unrewarding.

In this article, we present JmlEclipse (formerly JML4),
an Eclipse-based Integrated development and Verification
Environment (IVE) for Java and JML. Being built on top
of the Eclipse Java Development Tools (JDT), JmlEclipse
gets up-to-date support for Java (front-end, code generation,
etc) almost “for free”. Our contributions are as follows:

– After a very brief introduction to JML, we summarize
the JML tooling state-of-affairs, reflecting upon lessons
learned from the development of the first generation of
tools, projecting successes into our statement of goals for
any next generation tooling infrastructure (Sect. 2).

123

430 P. Chalin et al.

– With the purpose of illustrating progress made in achiev-
ing these goals we describe the phase I architecture
of JmlEclipse (Sect. 3) which was successfully used
to implement preliminary versions of a full range of
verification techniques both “natively” (RAC, ESC &
FSPV) and via “third party” contributions (constraint pro-
gramming, symbolic execution and automated test gen-
eration). While the implementations of the verification
techniques are incomplete, we can already witness the
synergies possible with the use of complementary verifi-
cation techniques within the same tool.

– We present an assessment of the successes and challenges
of the phase I architecture (Sect. 4). This serves as a moti-
vation for the phase II work which was greatly motivated
by the desire to further decouple JmlEclipse from the JDT
internals, making use of public Application Programming
Interface (API) instead.

– The main element of the phase II redesign is the creation
and use of the JML Intermediate Representation (JIR)
which not only allows us to reduce the coupling between
JmlEclipse and the JDT internals, but also serves as a
tool/component exchange format (Sect. 5). A summary
of the phase II architecture, the use of JIR and a brief
mention of future plans which promise to further decou-
ple JmlEclipse from the JDT are covered in Sect. 6.

– Finally, an overall assessment of the current state of
JmlEclipse is provided. In particular, we reassess the
goals and identifying risk items (Sect. 7).

The capabilities of verification tools supporting JML as well
as other languages are reviewed in the section on related
work (Sect. 8). We conclude in Sect. 9. In the next section,
we provide a brief introduction to JML for readers who are
unfamiliar with the notation.

2 Java Modeling Language

As was mentioned in the introduction, JML is a Behavioral
Interface Specification Language (BISL) [57] for Java. It
extends Java with support for Eiffel-like Design by Contract
(DBC) [41,44]. Hence, the required behavior of methods like
Counter.inc() in Fig. 1 can be expressed in the form of a
method contract which identifies the conditions which call-
ers must respect (preconditions) and conditions which the
given method promises to uphold (postconditions), provided
the precondition is respected.

In JML, method preconditions and postconditions are
expressed using requires and ensures clauses, respectively.
The contracts of Counter.inc() and Counter.get-
Count() are in fact examples of what are referred to as
lightweight contracts. In contrast, the Counter constructor
illustrates a heavyweight contract. A heavyweight contract
consists of a series of one or more behavior cases preceded

/**
 * Counters that count up to MAX and
 * then wrap back to 0.
*/

public class Counter {

public final static int MAX = 100;

/*@spec_public*/ private int count;
//@ invariant 0 <= count && count <= MAX;

/*@ public normal_behavior
 @ requires 0 <= count && count <= MAX;
 @ assignable this.count;
 @ ensures this.count == count;
 @ also public exceptional_behavior
 @ requires !(0 <= count && count <= MAX);
 @ assignable \nothing;
 @ signals (IllegalArgumentException e) true;
 @ signals_only IllegalArgumentException;
 @*/

public Counter(int count) {
if (!(0 <= count && count <= MAX))

throw new ();
this.count = count;

 }

//@ ensures \result == count;
/*@pure*/ public int getCount() {

return count;
 }

/*@ requires count < MAX;
 @ ensures count == \old(count) + 1;
 @ also
 @ requires count == MAX;
 @ ensures count == 0;
 @*/

public void inc() {
count = count < MAX ? count + 1 : 0;

 }
}

Fig. 1 Sample JML specification of a Counter class

by a visibility modifier that establishes the visibility of the
behavior case. Having the ability to set the visibility allows
JML developers to express public API contracts that differ
(generally are more abstract) from protected or public con-
tracts.

TheCounter.getCount()method illustrates another
feature of JML: Java methods can be used in specifications,
but only if they are free of side effects. Developers identify
such methods by marking them as pure. As with DBC, JML
also supports class invariants. Technically, an invariant is a
Boolean expression that is required to be true in all (client
visible) states of a program’s execution [43].

Finally, we note that JML goes well beyond the features
of DBC [18] to support, for example:

– Method contracts constraining the behavior of methods
when exceptions are thrown.

– Frame properties (illustrated by the assignable clause in
the Counter constructor contract).

– Model fields.

An example of the latter is the Counter.count field.
From a Java perspective, it is hidden from clients, but from
a JML perspective it is made visible as a specification-only

123

Towards an industrial grade IVE 431

field. Thus clients can use it to reason about the behavior of
Counters.

3 JmlEclipse: inception and early elaboration phases

3.1 Inception phase

One of the key initial activities of the project’s inception
phase was a careful analysis of the JML tooling state-
of-affairs, the results of which we describe next.

First Generation Tools: duplication of effort & high (col-
lective) maintenance overhead JML can be seen as an
extension to Java that adds support for Design by Contract
(DBC), though it has more advanced features as well—such
as specification-only class attributes, support for frame prop-
erties (indicating which parts of the system state a method
must leave unchanged), and behavioral subtyping—that are
essential to writing complete interface specifications [18].
The chief first generation JML tools essentially consist of
the:

– Common JML tool suite1 also known as JML2, which
includes the JML RAC compiler and JmlUnit [10],

– ESC/Java2, an extended static checker [24], and
– LOOP and PVS tool pair which supports full static pro-

gram verification [55].

Of these, JML2 is the original JML tool set. Although
ESC/Java2 and LOOP initially used their own annotation
languages, they rapidly switched to JML.

Being independent development efforts, each of the tools
mentioned above has its own front-end (e.g. scanner, parser,
abstract syntax tree (AST) hierarchy and static analysis code)
essentially for all of Java and JML. This amounts to substan-
tial duplication of effort and code. Recent evolution in the
definition of Java (e.g. Java 5, especially generics) and of
JML made it painfully evident that the limited resources of
the JML community could not cope with the workload that
it engendered.

As a result, for example, none of the current first gener-
ation tools yet fully supports Java 5 features. With respect
to the evolution of JML, only JML2 fully supports the new
non-null by default semantics [17].

Moving Forward with Lessons Learned What lessons
can be learned from the development of the first gener-
ation of tools, especially JML2 which, since early 2000,
has been the reference implementation of JML? JML2 was

1 Formerly the Iowa State University (ISU) JML tool suite.

essentially developed as an extension to the MultiJava (MJ)
compiler.

By “extension”, we mean that: for the most part, MJ
remains independent of JML; many JML features are nat-
urally implemented by subclassing MJ features and over-
riding methods; in other situations, extension points (calls
to methods with empty bodies) were added to MJ classes
so that it was possible to override behavior in JML2. We
believe that this approach has allowed JML2 to be success-
fully maintained as the JML reference implementation until
recently.Then what went wrong? We believe it was a combi-
nation of factors including the advent of a relatively big step
in the evolution of Java (including Java 5 generics) and the
difficulty in finding developers to upgrade MJ.

Goals for Next Generation Tool Bases Keeping in mind
that we are targeting mainstream industrial software develop-
ers as our primary user base, our goals for a next generation
research vehicle for the JML community can be summarized
as follows: the new tooling infrastructure should be

(1) based on, at least a Java compiler, ideally a modern IDE,
whose maintenance is assured by developers outside the
JML community;

(2) built, to the extent practicable, as an “extension” of the
base so as to minimize the integration effort required
when new versions of the base compiler/IDE are
released;

(3) capable of supporting at least the integrated capabilities
of RAC, ESC, and FSPV

As will be discussed in the section on related work, a few
recent JML projects have attempted to satisfy these goals. In
the sections that follow, we describe how we have attempted
to satisfy them in our design of JmlEclipse.

Early Prototype After much discussion, both within our
own research group and with other members of the JML
community, we decided that basing a next generation JML
tooling framework on the Eclipse JDT seemed like the most
promising approach. While the JDT is large—approximately
1 MLOC for 5000 files—and the learning curve is steep
(partly due to lack of documentation), DSRG researchers
nonetheless chose to “take the plunge” and began prototyp-
ing JmlEclipse in 2006.

In our first feature set, JmlEclipse enhanced Eclipse
3.3 with: (a) scanning and parsing of nullity modifiers
(nullable and non_null), (b) enforcement of JML’s
non-null type system (both statically and at runtime) [15],
and (c) the ability to read and make use of the extensive
JML API library specifications. This architecturally signif-
icant subset of features was chosen so as to exercise some
of the basic capabilities that any JML extension to Eclipse
would need to support. These include

123

432 P. Chalin et al.

– recognizing and processing JML syntax inside specially
marked comments, both in *.java files as well as
*.jml files;

– storing JML-specific nodes in an extended Java AST hier-
archy,

– statically enforcing a modified type system, and
– generating runtime assertion checking (RAC) code.

The chosen subset of features was also seen as useful in its
own right [15], somewhat independent of other JML features.
In particular, the capabilities formed a natural extension to
the existing embryonic Eclipse support for nullity analysis.

This early prototype served as a basis for analysis by mem-
bers of the JML Reloaded “subcommittee” of the JML Con-
sortium. In conclusion, the decision was to move forward
with development of JmlEclipse.

3.2 Early elaboration phase

In this section, we describe the mid-2008 JmlEclipse feature
set as evidence that the goals stated in Sect. 3.1 are being met,
especially with respect to framework capabilities in support
of the full range of verification technologies.

3.2.1 Feature set for the full range of verification

Front-end capabilities (and first-generation tools) We
mention in passing that in parallel with our work on next
generation components we have integrated the two main first-
generation JML tools, ESC/Java2 and JML RAC. Hence, at
a minimum, JML users actively developing with first gener-
ation tools will be able to continue to do so, but now within
the more hospitable environment offered by Eclipse.

With respect to the next generation components proper,
JmlEclipse’s front-end supports what are called JML Level
0, Level 1, and most of Level 2 features [43, §2.9]. Level
0 to 2 cover all essential JML features. The syntactic ele-
ments that remain are in Levels 3, C and X which cover
quite infrequently used JML features, support for Concur-
rency and eXperimental features, respectively [43, §2.9]. The
JmlEclipse front-end thus provides, to the other components
of JmlEclipse, the capabilities of a type checker similar to
that JML2’s jmlc command.

Runtime Assertion Checking (RAC) While basic support
for RAC (e.g., inline assertions and simple contracts and
invariants) is available, a next generation design inspired
from the current JML2 compiler is being lead by its original
author [19], Yoonsik Cheon, and his team at the University
of Texas at El Paso.

A key element of Cheon’s approach to RAC is the use
of wrapper methods in which each method implementation
is replaced by a wrapper method of the same name. This

wrapper method is responsible for calling a host of other RAC
methods created for the purpose of checking class invariants,
the method precondition and postcondition, etc.

Static Verification: ground-up designs using latest tech-
niques Besides work on the JmlEclipse infrastructure, the
DSRG has been focusing its efforts on the development of
a new component called the JML Static Verifier. This new
component offers early versions of ESC and FSPV. In this
section, we provide an overview of the capabilities of the
JML Static Verifier, details of its architecture will be given
in Sect. 3.3.

The ESC component of JmlEclipse, referred to as ESC4,
is a ground-up rewrite of ESC which is based on Barnett and
Leino’s innovative and improved approach to a weakest pre-
condition semantics for ESC [6]. Our FSPV tool, called the
FSPV Theory Generator, is like the JML LOOP compiler [55]
in that it generates theories containing lemmas whose proofs
establish the correctness of the compilation unit in question.
The FSPV Theory Generator currently produces theories
written in the Hoare Logic of Simpl—an Isabelle/HOL based
theory designed for the verification of sequential imperative
programs [50]. Lemmas are expressed as Hoare triples. To
prove the correctness of such lemmas, a user can interac-
tively explore their proof using the Eclipse version of Proof
General [2]—see Fig. 2.

3.2.2 Static verification features

In addition to supporting ESC and FSPV, the JML Static
Verifier component currently supports the following features:

– Multi Automated Theorem Prover (ATP) support includ-
ing: first-order ATPs (like Simplify and CVC3), and
Isabelle/HOL, which, we have found can be used quite
effectively as an ATP. While the Why based verifiers
Krakatoa and Caduceus also have multi-prover support
[31], the JML Static Verifier was recently enhanced with
experimental distributed multi-prover support [35,37].

– A technique we call 2D Verification Condition (VC) cas-
cading where VCs that are unprovable are broken down
into sub-VCs (giving us one axis of this 2D technique)
with proofs attempted for each sub-VC using each of the
supported ATPs (second axis).

– VC proof status caching. VCs (and sub-VCs) are self-
contained, context-independent lemmas (because the
lemmas’ hypotheses embed their context), and hence they
are ideal candidates for proof status caching. That is, the
JML Static Verifier keeps track of proven VCs and reuses
the proof status on subsequent passes, matching textually
VCs and hence avoiding expensive re-verification.

– Offline User-Assisted (OUA) ESC, which we explain
next.

123

Towards an industrial grade IVE 433

Fig. 2 ESC4 reporting that it
cannot prove loop invariants in
Cube.java; FSPV Theory
Generator Cube.thy theory and
its proof confirmed valid by
Isabelle

By definition, ESC is a static verification technique that is
fully automatic [33], whereas FSPV requires interaction with
the developer. OUA ESC offers a compromise: a user is given
the opportunity to provide (offline) proofs of sub-VCs, which
ESC4 is unable to prove automatically. Currently, ESC4
writes unprovable lemmas to an Isabelle/HOL theory file
(one per compilation unit). The user can then interactively
prove the lemmas using Proof General [3]. Once this is done,
ESC4 will make use of the proof script on subsequent invo-
cations. We have found OUA ESC to be quite useful because
ESC4 is generally able to automatically prove most sub-VCs,
hence only asking the user to prove the ones beyond ATP
abilities greatly reduces the proof burden on users.

Figure 3 sketches the relationship between the effort
required to make use of each of the JmlEclipse Static
Verifier verification techniques and the level of completeness
that can be achieved. Notice how ESC4, while requiring no
more effort to use than its predecessor ESC/Java2, is able to
achieve a higher level of completeness. This is because ESC4
makes use of multiple prover back-ends including the first
order provers Simplify and CVC3 as well as Isabelle/HOL.
As was mentioned earlier, Isabelle/HOL can be used quite
effectively as an automated theorem prover; in fact, Isabelle
is able to (automatically) prove the validity of assertions that
are beyond the capabilities of the first order provers. An
example of a method which JML Static Verifier can prove
correct using Isabelle/HOL as an ATP is Cube.java given
in Fig. 2 (the reason ESC4 shows that it is unable to prove the

Fig. 3 Static verification in JmlEclipse

loop invariants is because we disabled use of Isabelle/HOL
as an ATP for illustrative purposes—to contrast with what
can be proven using Cube.thy).

With its current feature set, we believe that JmlEclipse
is the first IVE for a mainstream programming language
to support the full range of verification technologies (from
RAC to FSPV), albeit, preliminary.2 Its innovative features
make it easier to achieve complete verification of JML anno-
tated Java code and this more quickly; initial results show
that ESC4 will be at least five times faster than ESC/Java2.

2 We also note that the proof system used by the Static Verifier compo-
nent has yet to be proven sound.

123

434 P. Chalin et al.

Furthermore, features like proof caching, and other forms of
VC proof optimization, offer a further 50% decrease in ver-
ification time. Better yet, an experimental feature providing
distributed multi-prover verification promises improvements
that are linear in the number of computing resources used in
the verification [35,37]. Of course, until JML Static Verifier
supports the full JML language (and certainly research chal-
lenges remain before this can be achieved [42]), these results
are to be taken as preliminary, but we believe that they are
indicative of the kinds of efficiency improvements that can
be expected.

3.3 Initial architecture

In this section, we present an architectural overview of
JmlEclipse with a particular focus on the compiler (rather
than other aspects of the IDE) which is referred to as the
JmlEclipse core.

3.3.1 Overview

At the heart of JmlEclipse is the JmlEclipse core, whose
processing phases are illustrated in Fig. 4. Most phases are

(Full) Parsing

Type Checking

diet AST

AST
Referenced
types (*.java)

Diet
Parsing

Diet Parsing

External Spec
Merge

Spec files
(*.jml, *.java)

Code Generation
(incl. RAC code)

AST (+ proof status)

Diet
Parsing

Flow Analysis

JML+Java
(*.java)

*.class

Static Verification
(incl. ESC)

Fig. 4 JDT/JmlEclipse core phases (phases in bold are JmlEclipse-
specific)

conventional. In the Eclipse JDT (and hence in JmlEclipse),
there are two types of parsing: in addition to the usual full
parse, there is also a diet parse, which only gathers class sig-
nature information and ignores method bodies. JmlEclipse-
specific phases are shown in bold and include the merge of
external specifications and static verification. Code instru-
mentation for the purpose of Runtime Assertion Checking
(RAC) is done during the JDT’s code generation phase.

A top-level module view of Eclipse and JmlEclipse is
given in Fig. 5. Eclipse is a plug-in based application plat-
form and hence an Eclipse application consists of the Eclipse
plug-in loader (Platform Runtime component), certain com-
mon plug-ins (such as those in the Eclipse Platform pack-
age) along with application specific plug-ins. While Eclipse
is written in Java, it does not have built-in support for Java.
Like all other Eclipse features, Java support is provided by a
collection of plug-ins referred to as the Eclipse Java Devel-
opment Tools (JDT).

The JML JDT extends the Eclipse JDT to offer basic sup-
port for JML. In particular, the JML JDT contains a modified
scanner, parser and Abstract Syntax Tree (AST) hierarchy.
The JML Static Verifier (SV) component design is described
next.

3.3.2 JML Static Verifier

As was explained in the previous section, the JML Static
Verifier supports two main kinds of verification: extended
static checking—both the normal kind and Offline User-
Assisted (OUA) ESC—and full static program verification.

Platform
Runtime

Eclipse Platform Workbench
Workspace
Team
Help

Eclipse 3.4

Simplify

JMLEclipse

JML JDT

JML SV

Proof
General

CVC3

Isabelle

JML
Checker

 ESC/Java2

JML First
Generation Tools

...
...

Fig. 5 Eclipse and JmlEclipse component diagram

123

Towards an industrial grade IVE 435

FSPV TG

Proof General

Isabelle/
HOL

Prog. Trans

VC Gen

Proof
Coordinator

ESC4

from front -end , after
Static Analysis phase

ATPsPost Processor

decorated
with proof

status

AST

AST

External
to Eclipse

Fig. 6 JmlEclipse Static Verifier dataflow

These are realized by the subcomponents named ESC4 and
the FSPV Theory Generator, respectively. A diagram illus-
trating data flow for the JML Static Verifier is given in Fig. 6.
The input to the JML Static Verifier is a fully resolved AST
for the compilation unit actively being processed.

Initiated on user request, separate from the normal com-
pilation process, the FSPV Theory Generator produces
Isabelle/HOL theory files for the given compilation unit
(CU). One theory file is generated per CU. Users can then
manipulate the theory files by using Proof General.

When activated (via compiler preferences), ESC4 func-
tionality is activated during the normal compilation process
following standard static analysis. The ESC phases are the
standard ones [33], though the approach used by ESC4 is new
in the context of JML tooling: it is a realization of the Bar-
nett and Leino approach [6] used in Spec# in which the input
AST is translated into VCs by using a novel form of guarded-
command program as an intermediate representation. The
Proof Coordinator decides on the strategy to use such as using
a single prover, cascaded VC proofs, OUA ESC and/or a dis-
tributed combination of these [35,36]. In the case of OUA
ESC, Isabelle theory files are consulted when sub-VCs are
unprovable and a user-supplied proof exists. Unfortunately,
the detailed design and full details of the behavior of the JML
Static Verifier are beyond the scope of this paper.

3.4 “Third Party” features

In addition to providing basic support for JML, JmlEclipse
has as a prime objective to be a research platform for other
research groups. That is, the success of JmlEclipse will be

measured, in part, by how easy it becomes for researchers
(other than those working on the JML JDT core) to extend
JmlEclipse.

To this end, we have some encouraging signs of success.
In addition to Yoonsik Cheon’s research group adding RAC
support to JmlEclipse, others have built upon JmlEclipse in
novel ways including:

– Robby and other SAnToS laboratory members3 from
Kansas State University make use of JmlEclipse as a
front-end to the Sireum/Kiasan symbolic execution sys-
tem and the associated KUnit test generation framework
[27].

– Tim Wahls has extended JmlEclipse to enable the execu-
tion of specifications through the use of constraint pro-
gramming [13,38].

4 Initial architectural assessment and phase II redesign

4.1 Successes and challenges

Both the teams of Tim Wahls and Robby essentially worked
independently of the JmlEclipse team during the develop-
ment of their respective JmlEclipse extensions. We believe
that this provides an initial indication of the viability of using
JmlEclipse as a research platform.

On the other hand, as core JmlEclipse developers, we
have come to realize the extent to which the Eclipse JDT
is a sophisticated multi-threaded incremental compiler spe-
cifically designed to offer effective, e.g., as-you-type well-
formedness (e.g., syntax and type) checking to developers.
Coming to terms with such an approach, as compared to that
of the classical compiler technology that first generation JML
tools were built on, has been one of the greatest challenges
that we faced while extending the JDT.

JmlEclipse work has been focused on core functionality
(e.g. JML language checker, RAC, ESC) as opposed to IDE
features proper. We came to realize that offering effective
well-integrated IDE support for features, like as-you-type
syntax checking and specification refactoring, would require
reworking of the JmlEclipse front-end.

4.2 JmlEclipse phase II architectural redesign

This anticipated need to re-architect the JmlEclipse font-end
coupled with a closer analysis of the requests of “third party”
JmlEclipse projects, has led to a second phase of JmlEclipse
research jointly carried out by the DSRG and SAnToS labo-
ratory.

3 Initially working independently from the original JMLEclipse devel-
opers, SAnToS and DSRG have since then become joint contributors
to the tool’s phase II design as will be explained in the next section.

123

436 P. Chalin et al.

The main objectives of this second phase redesign of
JmlEclipse has been to:

– make the JmlEclipse core minimal, by:

– factoring out some of the JML specific front-end code,
and

– pulling features such as RAC and ESC out of the core;

– offer non-core components access to fully resolved ASTs
built from the JDT’s public AST class hierarchy—called
the DOM—rather than internal AST classes.

As compared to internal JDT packages, the DOM, like all
public Eclipse API packages, is considerably less subject to
change and is much better documented. The later is a net
advantage for JmlEclipse third-party developers.

The principal mechanism by which JmlEclipse is achiev-
ing these new design goals is through the use of a carefully
designed JML Intermediate Representation (JIR) [48], which
not only provides a means of representing JML via the pub-
lic JDT DOM, but it also offers a standard mechanism for
embedding JML specification elements in class files. Our
JIR is detailed in the next section before JmlEclipse’s revised
architecture is presented in Sect. 6.

5 JML Intermediate Representation (JIR)

The JIR not only offers a means of decoupling non-core
JmlEclipse components from the internals of the Eclipse
JDT, it also serves the more useful purpose of being an
exchange format for JML tool components.

Next, we present the JIR design goals, JIR encoding and
the JIR infrastructure API used to abstract away, to the extent
possible, from the details of the JIR encoding. The work
reported in this section builds upon an early JIR design given
in [48].

5.1 Design goals and rationale

In a broad sense, our JML intermediate representation is
mainly aimed at providing a unified representation for
JML that can be easily generated by various JML front-
ends and consumed by different JML back-ends. Below are
design goals and corresponding rationale that we believe any
intermediate representation and its supporting infrastructure
should satisfy:

D1 Low barrier of (re-)entry: To help ease adoption, JML
tool developers should be able to learn JIR without sig-
nificant investment, and to use its tool support without
a significant learning (and maintenance) overhead.

D2 Comprehensive: It should be possible to represent all
JML constructs in JIR.

D3 Extensible: JIR can be easily extended to handle custom
JML constructs for experimentation with new language
features.

D4 Implementation-independent: JIR should not be tied
into a particular JML front-end, nor should it be biased
toward a particular analysis technique (e.g., static or
runtime assertion checking) or back-end.

D5 Robust tool-support for processing: JIR tool support
should be based on stable and robust software infra-
structures. In order not to compromise the robustness
of the underlying infrastructures, the JIR code base
should be small, thus easily maintained. Creating an
alternative implementation of JIR should take little to
modest effort, hence ensuring JIR’s implementation-
independence.

D6 Can be tightly integrated to various IDEs: IDEs play an
important role in the development of modern software.
To help ensure adoption, it should be possible to tightly
integrate JIR in popular Java IDEs.

D7 Can easily be constructed by hand: While JIR is tar-
geted for automatic processing, it should also be rel-
atively easy to construct JIR specifications manually.
This makes writing test cases easier and allows tool
developers working on JML extensions to prototype and
experiment with their extension even without a support-
ing JML front-end.

5.2 JIR definition

While developing JIR, we used the previously stated design
goals as a guide; for conflicting goals, we opted for function
and ease in engineering/maintenance over form since JIR is
not intended as JML input syntax for end-users.

There are three main perspectives from which JIR can be
described, namely from the point of view of a:

– JML tool back-end wanting to process JML (represented
as JIR);

– JML tool front-end wishing to use the JIR infrastructure
to create JIR for back-ends;

– JIR implementations wanting to process JIR class file
encodings.

Each of these is covered in the subsections given next. We
begin by presenting, at a high level, the JIR APIs offered to
JML tooling back- and front-end components. These APIs
allow components to be independent of the class file encod-
ing of JIR.

123

Towards an industrial grade IVE 437

5.3 JIR API for JML tool back-ends

JML tooling back-ends typically expect to receive from a
front-end a fully resolved AST with access to AST bind-
ings containing, e.g., type information. In designing the JIR,
we faced the conflicting goals of wanting JIR to be front-end
independent (D4) and yet be easy to learn and use (D1). From
the point of view of a back-end component designer, such as a
JIR client, (D4) implies that JML nodes should be presented
via an AST hierarchy specific to JIR whereas (D1) implies
that the AST should make use of the back-end’s native AST
classes.

Thankfully, an acceptable compromise is possible; the JIR
AST hierarchy offered to back-end components is shown in
Fig. 7. The essence of the compromise is to offer JIR spe-
cific AST nodes only for JML specific nodes, and to rely
on the back-end’s native AST node types for the rest, essen-
tially grafting native AST node types into JIR ASTs. Hence,
in particular, notice that several classes like JirAssign-
ableClause have Expression as a generic parameter.

A back-end can leverage an existing Java compiler’s
expression AST type to instantiate Expression. To fit a
compiler framework’s API in JIR, JIR requires an expression
parser and an expression pretty printer; these two modules
are usually part of a standard compiler framework API. Thus,
existing Java compiler frameworks such as JDT and Open-
JDK [22] can be used with JIR.

A consequence of the decision to use the back-end’s native
Expression type is that JML-specific expressions must be
encoded as pure Java Expressions. While the details of
this embedding of JML expressions as pure Java expressions
is given in Sect. 5.6, suffice it to say here that all JML expres-
sion constructs are represented using Java method invoca-
tions. Hence, for example, \result and \old()would be
represented by JIR.result() and JIR.old(), respec-
tively.

The JIR API allows back-ends to load what is called a
JIR Info Map from any given class file. The JIR Info Map
contains all JML specification information for one or more
given types. In particular, given a class name, method name,
and method signature, JIR API calls can return, from a given
JIR Info Map, the corresponding method contract as a JIR
AST node build from the types given in Fig. 7. A component
known as the Binding Manager can be used to access binding
(e.g., type) information. The (partial) binding class hierarchy
given in Fig. 8 illustrates the kinds of binding information
supported in JIR. Similar to the JIR AST hierarchy, some of
the binding types are generic over a back-end native binding
type Type, in this case, representing Java types.

Most type names in the hierarchy are self descriptive;
JirOpBinding is used to represent all JML constructs
that can be used in the context of an expression including
operators, keywords and set comprehension expressions.

5.4 JIR API for JML tool front-ends

The primary responsibility of a JIR-enabled front-end is to
map JML constructs represented in its native AST node types
into JIR. This is typically achieved using visitors that traverse
the front-end’s native AST creating:

– JIR AST nodes (of Fig. 7) along the way for top-level
JML declarations and clauses,

– converting JML expression constructs into their JIR
equivalents as (pure) Java expressions, and

– finally accumulating all top-level JML specification ele-
ments into a JIR Info Map.

Once this is done, a call to the JIR embedder can be used
to embed the JIR Info Map into class files. Details of the
encoding are given next.

5.5 JIR class file encoding

The standard Java 5 metadata facility, more commonly
referred to as Java 5 annotations, is what we use to embed JIR,
and hence JML, into class files. The embedding is achieved
as follows:

– JML modifiers like pure and non_null are embedded
as appropriately named Java 5 annotations like @Pure
and @NonNull.

– All other JML constructs are represented via JIR AST
nodes. As was mentioned before, these nodes are col-
lected into a data structure called a JIR Info Map. On a
per type basis, the relevant part of the map is serialized
and attached to the type .class file as @JIR anno-
tations. The JIR extractor and embedder read/write this
annotation.

Tooling front- and back-ends need not be concerned with the
details of the JIR encoding since access to JIR is achieved via
appropriate APIs as was previously described. This decou-
pling will allow us to continue experimenting with alternative
formulations of the encoding without impacting front- and
back-end code.

For sake of completeness, we briefly describe here our
current encoding scheme. The JIR Info Map serialization
is done using the XStream4 package that can serialize and
deserialize Java objects to/from XML. For example, an
instance of class C with class members int i = 3 and

4 http://xstream.codehaus.org.

123

http://xstream.codehaus.org

438 P. Chalin et al.

Fig. 7 JIR AST Hierarchy (partial)

Fig. 8 JIR type bindings hierarchy (partial)

A a = null would be represented as

<C>

<i>3</i>

<A/>

</C>

In XStream, it is also easy to provide custom serialization/
deserialization mappings. We have made use of this feature
to encode non-JIR specification AST nodes, such as Java
expressions. In fact, expressions are simply pretty-printed
into their Java source syntax; thus, the native AST expres-
sion type is not exposed by the encoding. As was mentioned
earlier, all JML expressions constructs are represented using
pure Java. Details are given next.

5.6 JML expression encoding in JIR

In JIR, JML expressions are represented as fully resolved
pure Java expressions that include, for example, typing and
“symbol table” information as will be explained shortly. For
instance, the ensures clause expression

count==\old(count) + 1;
of theinc()method of Fig. 1 would be represented in JIR as

JIR.field(Counter.class,”count”,int.class)

==

JIR.old(JIR.field(Counter.class,”count”,

int.class))+ 1;

(position information is omitted in this first example). The
JIR class contains helper methods such as old() and

result() used to represent JML constructs as method
invocations declared as, e.g.:

public static native <T> old(T o);

public static native <T> result();

In a sense, the JIR encoding of JML expressions has a
mixture of source and bytecode level information. More spe-
cifically:

– JML operators and keywords such as \result and
\old() are encoded as method invocations; and

– regular Java expressions in JML are represented as Java
expressions in JIR.

– all JIR expressions are well-formed (hence also well-
typed) Java expressions;

– most “symbol table” information is explicitly repre-
sented;

– source-level traceability information for symbols is
encoded;

Thus, an occurrence of an int method parameter x on
line 10 at column 4, might be represented as5

annPos(JIR.local(“x”,int.class,1),10,4))

where 1 is the local slot of x at the bytecode level. Such
bytecode information is needed by back-ends that process
class files without inspecting the corresponding Java source.
TheannPos()method call is used to encode, when needed,

5 Generic types can be preserved using the Java type casting syn-
tax; auto-boxing/unboxing are used to resolve issues with primitive/
non-primitive scalars.

123

Towards an industrial grade IVE 439

the position information for any expression node. As another
example, this is represented as

JIR.thiz(Counter.class)

One could also use

JIR.local(“this”, Counter.class, 0)

however, the former is a more compact representation with-
out loss of information.

The Java method invocation syntax is used as a represen-
tation for all JML expression constructs. The Java encod-
ing is not designed to be executable as is; what matters is
its interpretation by JML tools back-ends that consume JIR
expressions.

When a JIR expression is retrieved by a client (e.g.,
while processing arequires clause), the Binding Manager
resolves and transforms the expression first. The transforma-
tion removes all JIR encodings representing non-JML spe-
cific constructs such as source-level traceability information;
the returned expression is similar to the Java source-level
form (plus JML constructs). Information in JIR encodings
such as type and position information are stored as bindings
in the Binding Manager accessible through its query API.
Moreover, a client can query the Binding Manager to distin-
guish a JML keyword that is encoded as a method invocation
from a real (pure) method invocation in the specification.
Thus, when a client traverses the expression AST, it is as if
the client were traversing the source JML expressions with
all symbol, type, and position information similar to what it
would get from a JML front-end. That is, JIR is designed to
preserve as much information as needed for JML back-ends.

5.6.1 Quantified expressions

JML quantified expressions are also encoded as method invo-
cations. One key difference as compared to other JML con-
structs is that quantified expressions declare new variables
that are later used in their body. Quantified variables are
encoded like local variable references. For example,

(\forall int i; . . . i . . .)

is encoded as

JIR.forall(int.class, “i”,

. . .JIR.qvar(“i”,int.class) . . .)

5.6.2 Model specifications

There are three categories of JML model specifications: (1)
model types, (2) model fields, and (3) model methods.6

Each of these is represented in JIR by real Java classes,

6 Ghost fields are essentially treated like model fields.

fields, and methods (marked with @Model), respectively. By
making these specification elements explicit in JIR, support
for model specifications become simpler because symbols
associated with model attributes can be resolved as for regu-
lar attributes. (A simple checker can be developed to notify
users when regular code refers to JIR model elements.)

Also, at first thought, one might believe that this approach
to representing model entities by Java entities could affect
analysis back-end tools. For example, a program that uses
Java reflection to iterate over the methods declared in a class
now has more methods to iterate over. Actually, indepen-
dent of JIR, this is already the case. That is, Java 5 compilers
sometimes add extra methods, called bridge methods, to help
deal with issues that arise due to type erasure in bytecode.
Since analysis tools already have to take into account bridge
methods, it will be little extra work to filter out @Model
methods.

5.6.3 Inline specifications

Java 5 annotations are currently limited when it comes to their
use inside static blocks or constructor and method bodies;
in such cases, annotations can only be applied to (local or
catch) variable declarations. This makes it difficult to rep-
resent JML inline specifications such as assert. To address
this, we adopt the approach taken in the Bandera Specifi-
cation Language (BSL) [25] which leverages Java labels to
indicate program points inside methods. For example, we use
the method annotation:

@Maintaining(“L”, 14, 20, . . .)

to represent the following loop invariant at label L (assuming
L is at source line 14 and bytecode offset 20):

//@ maintaining . . .;

L: for (int i = 0; . . .){ . . .}

5.7 Alternatives to JIR

The Bytecode Modeling Language (BML), offers a byte-
code representation of JML [20]. Similar to BML, JIR uses a
mixed source/bytecode level encoding for JML expressions;
however, JIR uses standard Java annotations and pure Java
expressions that do not require a dedicated processor. The
two are complementary, and JIR can easily be translated to
BML for tools using BML.

The Microsoft Code Contract project goes beyond our
modest goal of providing a means of representing contracts
for Java in a tool-independent way. At the heart of the Code
Contract approach is a library of static methods and con-
ventions for their use. For example, the postcondition of a
user method increasing the value of the field x could be

123

440 P. Chalin et al.

encoded by placing, at the start of the method body, the call to
Contract.Ensures(x>Contract.Old(x)).

JIR and Code Contract are similar in that they both use
method invocations to represent special contract expressions
(e.g., JIR.old() and Contract.Old()). In contrast to
JIR, Code Contract specification elements, such as method
pre/post-conditions, are written as actual code within the
method body. Hence, no special front-end is needed to pro-
cess them. Since they are written as (plain) code, IDE fea-
tures are available for use over the contract elements. This
can be done because .NET compilers feature generic con-
ditional compilation that can be used to strip out contract
code, which alleviates some developers’ concern of pollut-
ing deployed code with contracts.

Finally, we note that Code Contract tools (a static ana-
lyzer and a runtime assertion checker) operate on the byte-
code level, while JIR is designed to be used both at the source
level and at the bytecode level. We are able to leverage mature
Java frameworks such as Eclipse JDT for specification pro-
cessing for JIR while corresponding frameworks for .NET
are still in active development.7

Use of method invocations to encode special contract
expressions has also been used in other approaches such
as in the Bogor software model checking framework [49]
for providing language extension mechanisms to model
domain-specific abstractions and optimizations (e.g., [4,8,
28]).
Kiasan [26] adopts the same approach to implement custom
extensions for interpreting JML-specific expressions [47].
Another example is the Java PathFinder (JPF) [9] that uses
native methods as place holders to facilitate extensions.

5.8 Assessment

To a large extent, JIR and its supporting infrastructure sat-
isfy the design goals established in Sect. 5.1. The fact that
JML expressions in JIR are encoded as pure Java presents
a low barrier of entry (D1), because JML tool developers
do not need to learn a new format.8 Moreover, the represen-
tation is front-end/back-end independent (D4). In addition,
existing and robust Java compiler (e.g., OpenJDK, Eclipse
JDT) and bytecode engineering frameworks (e.g., ASM,9

BCEL10) can be used as is without modification; hence, JIR
supporting infrastructure can be implemented within a small
core code base (D5). This also means that the JIR infrastruc-
ture can be tightly-integrated in popular Java IDEs such as
Eclipse or NetBeans (D6). Since JIR uses Java annotations

7 M. Barnett, personal communication, 2009.
8 Technically, there is the encoding itself, but it is rather straightfor-
ward, e.g., \old() maps to JIR.old().
9 http://asm.objectweb.org.
10 http://jakarta.apache.org/bcel.

and the method invocation syntax whose schema can be eas-
ily modified/enhanced by tool developers, JIR can represent
any JML construct and can be easily extended (D2 and D3). In
addition, JIR is Java-based at a mixed source/bytecode level
that is more amenable for manual construction/modification
unlike pure S-expressions (D7).

Perhaps one of the main weaknesses of JIR is that its
encoding of JML expressions is a verbose (e.g., symbol table
embedding) and non-traditional use of Java syntax. It is non-
traditional in that the resulting encoding essentially repre-
sents a fully resolved AST, which, if it contains encoding of
JML constructs, has no (precise) meaning until it is inter-
preted by a back-end tool. Our choice of encoding was a dif-
ficult choice that we made in order to liberate ourselves from
the engineering and maintenance burden of having a dedi-
cated JML processor or being tightly coupled with an unsta-
ble (internal) compiler API. However, since JIR is designed
mainly for automatic processing, a representation is just that,
a representation. Considering JML’s tool history, its cur-
rent state, the scale of the problem with the ever expanding
Java language features, and the number of active contrib-
utors/benefactors, we believe this is a worthwhile compro-
mise. In the end, what really matters is not the encoding of
the JML intermediate representation, but the impact that JML
and its tools make on formal method research and software
reliability in general.

Regardless, the current verbosity of the JIR expression
encoding may be alleviated by string compression tech-
niques that we are currently experimenting with. Moreover,
the JIR software infrastructure decouples JIR back-ends and
the actual JIR encodings used. That is, the JIR API that back-
ends use is not affected by encoding changes.

6 Revised JmlEclipse architecture, current and future
plans

6.1 Redesign reduces coupling to JDT

The main effort in the redesign of JmlEclipse has been in the
creation of JML Intermediate Representation (JIR) and its
supporting infrastructure that has been previously discussed.
A secondary effort was the refactoring of JmlEclipse itself
to make use of JIR. As a result, both the coupling to the JDT
and the invasive code changes to it have been reduced as
illustrated in Fig. 9.

While in the original design of JmlEclipse, invasive
changes were made to the scanner, parser and the JDT inter-
nal AST classes, the only invasive changes that remain in
the JDT are to the scanner and parser (and even this can
be reduced or completely eliminated as is explained next).
Instead of the internal ASTs, JmlEclipse now makes use of
the JDT’s public DOM types and provides JML specific AST
nodes via the JIR AST package.

123

http://asm.objectweb.org
http://jakarta.apache.org/bcel

Towards an industrial grade IVE 441

Fig. 9 JmlEclipse design and
“foot-print” (amount of invasive
code changes) on the JDT.
Grayed areas show JmlEclipse
specific code. a Original design.
b Phase II design has
considerably reduced coupling

(a) Original design (b) Phase II design has considerably reduced coupling

i n
 t e

 r n
 a l

 J
 D

 T

p u
 b l

 i c

A
 P

 I

scanner
& parser

Java AST scanner
& parser

JMT - specific
AST

Java AST

JDT DOM JIR AST

In the subsection that follows, we present two alternate
input syntaxes for JML, which, if adopted, would enable JML
to be supported by means of standard Java language features.
Some experimental support for these languages has been inte-
grated into JmlEclipse.

6.2 Towards supporting JML as a standard extension to Java

Earlier, the DSRG conducted an empirical study whose goal
was to determine if developers, having native programming
language support for Design by Contract (DBC), would make
use of program assertions (the basic ingredient of contracts)
in a proportion higher than in other languages. The study
results indicated that programmers using Eiffel (the only
active language with built-in support for DBC) tend to write
assertions at a rate that is 1.6 to 5 times higher than in lan-
guages having basic support for assertions but lacking sup-
port for DBC [14].

This study gives weight to one of our secondary Jml
Eclipse goals: to explore new Java language features to help
bring JML closer to being a standard extension to Java. In
doing so, our hope is that eventually, Java will be enhanced
with native support for DBC: as of the fall of 2009, the top
Request For Enhancement (RFE) listed at bugs.sun.com
is added support for DBC.

6.2.1 A Java 5 annotation-based input syntax

As a first step in this direction, JmlEclipse now also
recognizes JML constructs expressed in the form of Java
5 annotations. Figure 10 shows part of the Counter class
originally shown in Fig. 1 rewritten to make use of the Java 5
annotations designed by Kristina Boysen Taylor in the con-
text of her work on JML5 [53]—JML5 will be discussed in
more detail in the related work section. Use of Java 5 anno-
tations enables JML tool features (e.g. ESC) to be written
as Java annotation processors, and thus be usable with any
Java compiler [52] as opposed to only JmlEclipse. Further-
more, as of Java 6, annotations offer a standard means of
embedding JML specifications within class files, something
which up until now required a special encoding of a vari-
ant of JML called the Bytecode Modeling Language (BML)
[20]. Being a standard Java feature, use of annotations also
opens the door to the processing of JML by non-JML tools.

public class Counter {

public final static int MAX = 100;

@SpecPublic private int count;
 //...

@Ensures("\result == count")
@Pure public int getCount() {

return count;
 }

 @Also({
 @SpecCase(
 requires = "count < MAX",
 ensures = "count == \old(count) + 1"),
 @SpecCase(
 requires = "count == MAX",
 ensures = "count == 0")

})
public void inc() {

count = count < MAX ? count + 1 : 0;
 }
}

Fig. 10 Example of JML written using Java 5 annotations

This is already being experimented with: Modern Jass [46]
offers RAC support for a subset of JML [54] through the
exclusive use of “the Pluggable Annotation Processing API
to validate contracts, and the Bytecode Instrumentation API
to enforce contracts” [45]. Of course, in having different tools
processing the same JML annotations, there will be a need
to establish a clear semantics for each annotation type [21].

Not all JML constructs can currently be encoded as Java 5
annotations; this will still be the case after the added support
of JSR-308 [30] to Java 7 which will allow annotations any-
where types are allowed—including local variable declara-
tions. Hence, JmlEclipse will continue to support the current
JML comment-based annotation syntax for a while. In any
case, the use of Java 5 annotations to encode JML specifica-
tions is still experimental. More extensive use of this feature
is needed in order to help confirm the most suitable way to
encode JML specifications.

6.2.2 Java contract notation

Inspired by Microsoft’s Code Contracts, we have defined a
notation that we call Java Contract, or JC for short. A sam-
ple JC for our running counter example is given in Fig. 11.
One can notice that the notation is similar in overall appear-
ance to original JML2 syntax. The advantages previously
mentioned for Code Contracts also apply to JC. Thus, in

123

442 P. Chalin et al.

public class Counter {

public final static int MAX = 100;

@CodePrivate public int count;
 //...

@Pure public int getCount() {
 JC.spec(JC.ensures(
 JC.<Integer>result() == count)
);

return count;
 }

public void inc() {
 JC.spec(
 JC.requires(count < MAX),
 JC.ensures(count == JC.old(count) + 1)
);
 JC.spec(
 JC.requires(count == MAX),
 JC.ensures(count == 0)
);

count = count < MAX ? count + 1 : 0;
 }
}

Fig. 11 Example of JML using our Java Contract notation

particular, all Java IDE features are applicable to JC encoded
JML such as syntax highlighting. More significantly, e.g., the
frequently used Eclipse operations of class, field or method
renaming will also apply the renaming to JC. Our redesigned
JmlEclipse supports JC to JIR transformations. Since Java
does not support conditional compilation, like the .NET com-
pilers we have a separate bytecode “stripper” that removes,
e.g., JC method contracts from the start of method bodies
since these contracts are non-executable. We are currently
exploring an alternative scheme such as providing a simple
implementation of conditional (method) compilation in the
JmlEclipse core.

We have yet to make extended use of these new alternate
input syntaxes to JML, though we feel they hold promise.
Extended use will be necessary before conclusions can be
drawn on which notation should be proposed as the official
JML input syntax in the near future.

7 Assessment

Goals In Sect. 3, we listed three goals to be satisfied by any
next generation tooling infrastructure for JML. In summary,
(1) the infrastructure should be built as an extension to a
compiler + IDE whose maintenance is guaranteed by oth-
ers, (2) minimize integration efforts as the IDE code base
evolves, and (3) demonstrate the feasibility of supporting the
full range of current verification technologies.

The first goal has been achieved simply by our choice
of the Eclipse JDT as a tool base—though doing so intro-
duced some risks that we discuss in the next section. Since
the second goal (ease of maintenance) is related to the risk
items, we defer assessment of this goal to the next section as
well. Achievement of the third goal is demonstrated by the

implementation of the most recent JmlEclipse feature set we
have achieved, for a non-trivial subset of JML, support for
RAC, ESC, FSPV and symbolic execution.

As evidence that JmlEclipse is actually usable in practice,
we point out that we have successfully applied it to a case
study (totaling over 470K SLOC) in which we made use of
the enhanced non-null-type static analysis and RAC capabil-
ities of JmlEclipse [17].

Risk items The Eclipse JDT is a very dynamic code base,
with code changes introduced every few weeks. This was
perceived as an important risk item for JmlEclipse. As we
explain next, early on we found a suitable means of allowing
JmlEclipse to extend the JDT so as to keep JmlEclipse code
rework to a minimum when JDT changes are released.

JmlEclipse, like JML2, is built as a closely integrated and
yet (relatively) loosely coupled extension to an existing com-
piler. An additional benefit for JmlEclipse is that the timely
compiler-base maintenance is assured by the Eclipse Foun-
dation developers. Hence, as compared to JML2, we have
traded in committer rights for free maintenance; a choice
which we believe will be more advantageous in the long
run—in particular due to the rapid pace of the evolution of
Java. Unfortunately, loosing committer rights means that we
must maintain our own mirror of the JDT code.

A careful adoption of certain coding conventions has
allowed us to merge regular JDT updates (since 2006) in
less than 15 min on average; this is especially true since our
phase II decoupling of JmlEclipse. One of our objectives is
also to make it easy for all members of the JML research
community to extend JmlEclipse, such as integrating their
own tools. While concerns were expressed about the steep
learning curve involved with the original JmlEclipse design
[48], our initial experience with the JmlEclipse design based
on the public DOM API is very encouraging. The public JDT
DOM API is well documented and versatile.

JIR and JmlEclipse Phase II Redesign The creation of the
JML Intermediate Representation (JIR) has helped us further
decouple JmlEclipse from the JDT and it offers the promise
of being a convenient exchange format between JML tooling
front- and back-ends.

To date, font-end support for JIR has been implemented
in both JmlEclipse and OpenJML. JIR enabled back-ends
include the JmlEclipse Static Verifier components and
Kiasan.

8 Related work

8.1 Verification tool support for Java and/or JML

In this section, we briefly compare JmlEclipse to its sib-
ling next generation projects JML3, JML5, JaJML as well
as to Jahob, the Java Applet Correctness Kit (JACK) and

123

Towards an industrial grade IVE 443

OpenJML. Further details, examples and tools are covered
in [16].

JML3 The first next-generation Eclipse-based initiative
was JML3, created by David Cok. The main objective of the
project was to create a proper Eclipse plug-in, independent
of the internals of the JDT [23]. Considerable work has been
done to develop the necessary infrastructure, but there are
growing concerns about the long-term costs of this approach.

Because the JDT’s parser is not extensible from pub-
lic JDT extensions points, a separate parser for the entire
Java language and an AST had to be created for JML3; in
addition, Cok notes that “JML3 [will need] to have its own
name/type/resolver/checker for both JML constructs [and]
all of Java” [23]. Since one of the main goals of the next
generation tools is to escape from providing support for the
Java language, this is a key disadvantage.

Jahob is a language and system used in the verification
of Java programs. In marked contrast to JML, the Jahob lan-
guage is a BISL for Java based on higher-order logic—not
without some resemblance in syntax to Isabelle [58]. Jahob
tools support VC generation and discharging using a variety
of first-order and higher-order provers including CVC3, Z3
and Isabelle. Like JmlEclipse, the Jahob system makes use
of multiple provers during any given verification run to dis-
charge VCs [59]. On the other hand, Jahob does not appear
to support Runtime Assertion Checking (RAC).

JACK The Java Applet Correctness Kit (JACK) is a tool
for JML annotated Java Card programs initially developed
at Gemplus (2002) and then taken over by INRIA (2003)
[7]. It uses a weakest precondition calculus to generate proof
obligations that are discharged automatically or interactively
using various theorem provers [12]. While JACK is a can-
didate next generation tool (offering features unique to JML
tools such as verification of annotated byte code [11]), being a
proper Eclipse plug-in, it suffers from the same drawbacks as
JML3 with respect to the need to maintain a separate compiler
front-end. Additionally JACK does not provide support for
RAC; we believe RAC is an essential component of a main-
stream IVE. An advantage that JACK has over JmlEclipse’s
current capabilities is that it can present VCs to the user in a
Java/JML-like notation. The key drawback of JACK is that,
since 2007, it is no longer maintained.

JML5 The JML5 project was the subject of Kristina
Boysen Taylor’s master’s thesis work done under the guid-
ance of Gary Leavens [53]. The main project goal was to
explore the feasibility of embedding JML specifications in
Java 5 annotations rather than Java comments. As was men-
tioned earlier, such a change would allow JML tools to be
written as standard annotation processors to de-use in con-
junction with any Java 5 compliant compiler.

Unfortunately, the implementation of JML5 was not fully
completed. This may have been due, in part, to the difficulty
faced in adapting the MJ compiler to parse subsets of the

full JML grammar. For example, an @Requires annotation
value is a string representing a JML predicate expression.
In contrast, the Eclipse JDT was designed as an incremental
compiler with sophisticated parse error recovery schemes.
Thus, adapting JmlEclipse to parse JML expressions or any
other JML grammar non-terminal can naturally be achieved
given the base capabilities of the JDT core.

JaJML is an early research prototype built atop the Jast-
Add Java compiler [34]. JastAdd is a compiler framework
that uses attribute grammars and supports Aspect Oriented
Programming (AOP) [32]. JaJML’s main advantage over
JmlEclipse is the ease with which it can be extended. Indeed,
Haddad and Leavens note that adding RAC support to JaJML
for while loop variants and invariants was done in a fraction
of the number of lines of code that were needed to add them
to JmlEclipse. The main disadvantages of JaJML include
its lack of integration with an IDE and no guaranteed third-
party maintenance for the underlying JastAdd Java compiler.
While use of JastAdd offers increased modularity, there is
currently no empirical data on its performance impact. The
ability of JaJML to provide support for static verification has
yet to be de-risked.

OpenJML is currently the most inclusive next generation
JML compiler in terms of its base language support for JML.
Built by David Cok atop Sun’s OpenJDK, it offers a checker,
RAC and ESC.

OpenJML has been a successful experiment in creating
a JML compiler as a direct extension to its base. Its main
drawback, as compared to JmlEclipse, is its lack of integra-
tion with an IDE. OpenJML does not, as of yet, have support
for FSPV.

Summary Table 1 presents a summary of the comparison
of the tools supporting JML. As compared to the approach
taken in JmlEclipse, the main drawback of the other tools,
with the exception of OpenJML, is that they are likely to
require more effort to maintain over the long haul as Java
continues to evolve due to the looser coupling with their
base.

8.2 Verification tool support for other languages

KeY While the KeY tool was adapted to accept JML, it also
supports other languages [1]. KeY is an integrated develop-
ment environment that targets verification at a slightly higher
level than most other tools. This is because KeY supports the
annotation of design artifacts such as class diagrams. KeY
does not support RAC or ESC though both automated and
interactive FSPV are supported. Like JACK, KeY presents
VCs in a JML-like notation.

Omnibus is a functional language with syntax similar to
Java’s that compiles to Java bytecode [56]. The language was
designed with reduced capabilities as compared to Java (e.g.,
it lacks support for exceptions, interface inheritance, and

123

444 P. Chalin et al.

Table 1 A comparison of possible next generation JML tools

JML2 JML3 Jml JML5 JaJML ESC/ JACK OpenJML
Eclipse Java2

Base Compiler/IDE Name MJ JDT JDT any Java JastAdd EJ2 JDT OpenJDK
7+ Java

Maintained (supports Java≥ 5) × � � � � ×a × �
Reuse/extension of base (e.g. parser, AST) vs. copy-and-change � × � × � × × �
Tool Support RAC � � � (�) � N/A N/A �

ESC N/A (�) � N/A × � �b ×
FSPV N/A × � N/A × N/A � ×

MJ MultiJava, JDT Eclipse Java Development Toolkit, N/A not possible, practical or not a goal, (�) = planned
a ESC/Java2 is being maintained, but its compiler front end has yet to reach Java 5
b Strictly speaking, JACK supports an automated form of FSPV, not ESC

concurrency) so as to ease verification. Each of the source
files in an Omnibus project has an associated verification
policy that gives the level of verification required for it,
which can be RAC, ESC, or FSPV. A custom IDE was devel-
oped that make these and other development activities easier,
including tracking the verification status of (and method used
for) each file. Simplify and PVS are the theorem provers used
for ESC and FPV, respectively. Hence, Omnibus offers ver-
ification support comparable to that of JmlEclipse, though
not for a mainstream language.

Resolve is the name of a framework, approach/meth-
odology and language used to describe component-based
systems. The implementation language is an imperative
object-like language whose central swap operator (which
replaces the traditional assignment operator) is key to its alias
avoidance [29]. The Resolve Verifying Compiler appears to
support ESC and FSPV, using either an integrated prover
or Isabelle [51]. It is unclear whether the Resolve Verify-
ing Compiler, or other resolve tools, support RAC. In recent
work, Kulczycki has illustrated how the Resolve approach
could be applied directly when writing a disciplined form of
Java [39].

Spark [5] was developed for the implementation of
safety-critical control systems. It is a subset of Ada extended
with annotations to provide support for DBC enriched with
data flow specifications. The subset was chosen to be amena-
ble to ESC and FSPV and yet be useful for writing industrial
applications. Unlike the other languages discussed in this
section, there is no support for RAC, since static verification
is used to show that errors—including contract violations—
cannot happen at runtime.

Static analysis is performed in three stages. The first stage
is provided by the Examiner and is similar to the JDT’s flow
analysis. In the second stage, the Simplifier automatically dis-
charges those VCs that it can and leaves the rest for the Proof
Checker, an interactive theorem prover. The Proof Obligation
Summary (POGS) tool is used to reduce the various outputs
of the static analysis and proof tools to a single report that

gives the status of the verification process overall including,
in particular, a list of any VCs that remain unproved. In a
sense, when using Offline User Assisted ESC, JmlEclipse
can be seen to behave like the POGS. All of these tools are
stand-alone command-line tools.

9 Conclusion and future work

Reengineering a fairly extensive first generation tool base
while creating new tools and elaborating the tooling infra-
structure is going to take considerable time and effort.
In this paper we have presented our contribution to this
effort— JmlEclipse.

The idea of providing JML tool support by means of a
closely integrated and loosely coupled extension to an exist-
ing compiler was successfully realized in JML2. Although
this worked well, unfortunately the chosen base Java com-
piler is no longer officially maintained. Applying the same
approach, we have extended the Eclipse JDT to create the
base infrastructure of JmlEclipse. During the inception phase
of this project, an early JmlEclipse prototype served as a
basis for discussion by some members of the JML consor-
tium, and eventually it came to be adopted as the main avenue
to pursue in the JML Reloaded effort. A JML Winter School
followed in 2008, during which members of the community
were given JmlEclipse developer training [40]. Since then,
we have enhanced JmlEclipse’s feature set, in particular, with
support for next generation ESC, FSPV and symbolic exe-
cution components.

Early experience in using JmlEclipse as a tooling plat-
form prompted us to re-architect JmlEclipse creating a min-
imal JDT-dependant core, with all other components working
from public JDT APIs. This has been successful to a large
extent because of the creation and use of the JML Interme-
diate Representation (JIR), which, in addition to helping to
further decouple JmlEclipse from the JDT, it also holds the
promise of being an effective tool exchange format. As a

123

Towards an industrial grade IVE 445

preliminary demonstration of this, we have JIR-enabled not
only JmlEclipse but also OpenJML. We are hopeful, that this
re-architected JmlEclipse will be a strong candidate to act as
a next generation research platform and industrial grade ver-
ification environment for Java and JML.

Acknowledgments This article is an extension of our earlier work
presented as the Second IFIP Working Conference on Verified
Software: Theories, Tools, and Experiments [16]. This research was
supported in part by the Natural Sciences and Engineering Research
Council of Canada and the Québec Fonds de Recherche sur la Nature
et les Technologies, and by the US National Science Foundation (NSF)
award CNS-0709169 and CAREER award CCF-0644288.

References

1. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle,
R., Menzel, W., Mostowski, W., Roth, A., Schlager, S., Schmitt,
P.H.: The KeY tool. Softw. Syst. Model. 4, 32–54 (2005)

2. Aspinall, D.: Proof General. http://proofgeneral.inf.ed.ac.uk
(2008)

3. Aspinall, D., Winterstein, D., Luth, C., Fayyaz, A.: Proof general
in Eclipse: system and architecture overview. In: Proceedings of
the OOPSLA Workshop on Eclipse Technology eXchange (ETX)
(2006)

4. Baresi, L., Ghezzi, C., Mottola, L.: On accurate automatic verifica-
tion of publish-subscribe architectures. In: Proceedings of the Inter-
national Conference on Software Engineering (ICSE), pp. 199–208
(2007)

5. Barnes, J.: High integrity software: the Spark approach to safety
and security. Addison-Wesley, Reading (2003)

6. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured
programs. In: Workshop on Program Analysis for Software Tools
and Engineering (PASTE), Lisbon, Portugal. ACM Press (2005)

7. Barthe, G., Burdy, L., Charles, J., Grégoire, B., Huisman, M.,
Lanet, J.-L., Pavlova, M., Requet, A.: JACK: a tool for validation of
security and behaviour of Java applications. In: Proceedings of the
5th International Symposium on Formal Methods for Components
and Objects (FMCO), (2007)

8. Bianculli, D., Ghezzi, C., Spoletini, P.: A model checking approach
to verity BPEL4WS Workflows. In: Proceedings of the IEEE Con-
ference on Serice-Oriented Computing and Applications (SOCA),
pp. 13–20 (2007)

9. Brat, G., Havelund, K., Park, S., Visser, W.: Java PathFinder—a
second generation of a Java model-checker. In: Proceedings of the
Workshop on Advances in Verification (2000)

10. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R.,
Leavens, G.T., Leino, K.R.M., Poll, E.: An overview of JML tools
and applications. Int. J. Softw. Tools Technol. Transfer 7(3), 212–
232 (2005)

11. Burdy, L., Huisman, M., Pavlova, M.: Preliminary design of BML:
a behavioral interface specification language for Java bytecode.
In: Proceedings of the Fundamental Approaches to Software Engi-
neering (FASE). LNCS, vol. 4422, pp. 215–229 (2007)

12. Burdy, L., Requet, A., Lanet, J.-L.: Java Applet correctness: a devel-
oper-oriented approach. In: Proceedings of the International Sym-
posium of Formal Methods Europe. LNCS, vol. 2805, pp. 422–439.
Springer, Berlin (2003)

13. Catano, N., Wahls, T.: Executing JML specifications of Java card
applications: a case study. In: Proceedings of the ACM Symposium

on Applied Computing, Software Engineering Track (SAC-SE),
Hawaii, March 2009

14. Chalin, P.: Are practitioners writing contracts? In: Butler, M., Jones,
C.B., Romanovsky, A., Troubitsyna, E. (eds.) Rigorous Devel-
opment of Complex Fault-Tolerant Systems. LNCS, vol. 4157,
pp. 100–113. Springer (2006)

15. Chalin, P., James, P.R.: Non-null references by default in Java:
alleviating the nullity annotation burden. In: Proceedings of
the 21st European Conference on Object-Oriented Programming
(ECOOP), Berlin, Germany, July–August. LNCS, vol. 4609,
pp. 227–247. Springer, New York (2007)

16. Chalin, P., James, P.R., Karabotsos, G.: JML4: towards an indus-
trial grade IVE for Java and next generation research platform for
JML. In: Proceedings of the International Conference on Veri-
fied Software: Theories, Tools, Experiments (VSTTE), Toronto,
Canada. October 6–9, 2008

17. Chalin, P., James, P.R., Rioux, F.: Reducing the use of nullable
types through non-null by default and monotonic non-null. IET
Softw. J. 2(6), 515–531 (2008)

18. Chalin, P., Kiniry, J., Leavens, G.T., Poll, E.: Beyond assertions:
advanced specification and verification with JML and ESC/Java2.
In: Fourth International Symposium on Formal Methods for Com-
ponents and Objects (FMCO’05). LNCS, vol. 4111, pp. 342–363
(2006)

19. Cheon, Y.: A runtime assertion checker for the Java Modeling
Language. Iowa State University, Ph.D. Thesis. TR #03-09, April
2003

20. Chrzaszcz, J., Huisman, M., Schubert, A., Kiniry, J., Pavlova,
M., Poll, E.: BML Reference Manual. http://bml.mimuw.edu.pl/
(2008)

21. Cok, D.: Adapting JML to generic types and Java 1.6. In: Proceed-
ings of the International Workshop on Specification and Verifica-
tion of Component-Based Systems (SAVCBS), Atlanta, Georgia
(USA). November 2008

22. Cok, D.: OpenJML. http://sourceforge.net/apps/trac/jmlspecs/
wiki/OpenJML (2009)

23. Cok, D.R.: Design Notes (Eclipse.txt). http://jmlspecs.svn.
sourceforge.net/viewvc/jmlspecs/trunk/docs/eclipse.txt (2007)

24. Cok, D.R., Kiniry, J.R.: ESC/Java2: uniting ESC/Java and JML.
In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T.
(eds.) Proceedings of the International Workshop on the Construc-
tion and Analysis of Safe, Secure, and Interoperable Smart Devices
(CASSIS’04), Marseille, France, March 10–14, 2004. LNCS, vol.
3362, pp. 108–128. Springer (2004)

25. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Robby: Expressing check-
able properties of dynamic systems: the Bandera specification lan-
guage. Int. J. Softw. Tools Technol. Transfer 4(1), 34–56 (2002)

26. Deng, X., Lee, J., Robby: Bogor/Kiasan: a k-bounded symbolic
execution for checking strong heap properties of open systems. In:
Proceedings of the IEEE/ACM Conference on Automated Software
Engineering (ASE), pp. 157–166 (2006)

27. Deng, X., Robby, , Hatcliff, J.: Kiasan/KUnit: Automatic Test Case
Generation and Analysis Feedback for Open Object-Oriented Sys-
tems. Kansas State University, Kansas (2007)

28. Dwyer, M.B., Robby, Tkachuk, O., Visser, W.: Analyzing interac-
tion orderings with model checking. In: Proceedings of the IEEE
Conference on Automated Software Engineering, Linz, Austria,
pp. 154–163 (2004)

29. Stephen, H.E., Wayne, D.H., Timothy, J.L., Murali, S.,
Bruce, W.W.: Part II: specifying components in RESOLVE. SIG-
SOFT Softw. Eng. Notes 19(4), 29–39 (1994)

30. Ernst, M., Coward, D.: Annotations on Java Types. JCP.org, JSR
308. October 17, 2006

31. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus plat-
form for deductive program verification. In: Proceedings of the

123

http://proofgeneral.inf.ed.ac.uk
http://bml.mimuw.edu.pl/
http://sourceforge.net/apps/trac/jmlspecs/wiki/OpenJML
http://sourceforge.net/apps/trac/jmlspecs/wiki/OpenJML
http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/trunk/docs/eclipse.txt
http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/trunk/docs/eclipse.txt

446 P. Chalin et al.

Conference on Computer Aided Verification (CAV). LNCS, vol.
4590 (2007)

32. Filman, R.E., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Soft-
ware Development. Addison-Wesley, Reading (2005)

33. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G.,
Saxe, J.B., Stata, R.: Extended static checking for Java. Proc. ACM
SIGPLAN Conf. Program. Lang. Des. Implement. 37(5), 234–
245 (2002)

34. Haddad, G., Leavens, G.T.: Extensible Dynamic Analysis for JML:
A Case Study with Loop Annotations. University of Central Florida
CS-TR-08-05. April, 2008

35. James, P.R., Chalin, P.: Extended static checking in JML4: benefits
of multiple-prover support. In: Proceedings of the ACM Sympo-
sium on Applied Computing, Software Verification and Testing
Track (SAC-SVT), Hawaii. March 2009

36. James, P.R., Chalin, P.: Faster and more complete extended static
checking for the Java Modeling Language. J. Autom. Reason. 44,
145–174 (2010)

37. James, P.R., Chalin, P., Giannas, L., Karabotsos, G.: Distributed,
multi-threaded verification of Java Programs. In: Proceedings of
the International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS), Atlanta, Georgia (USA).
November 2008

38. Krause, B., Wahls, T.: jmle: a tool for executing JML specifications
via constraint programming. In: Proceedings of the Formal Meth-
ods for Industrial Critical Systems (FMICS). LNCS, vol. 4346.
March, 2009

39. Kulczycki, G.: Resolve-style components in Java. In: Proceedings
of the RESOLVE Workshop, Virginia, USA (2009)

40. Leavens, G.T.: The Java Modeling Language (JML). http://www.
jmlspecs.org (2007)

41. Leavens, G.T., Cheon, Y.: Design by contract with JML. http://
www.jmlspecs.org (2006)

42. Leavens, G.T., Leino, K.R.M., Mueller, P.: Specification and veri-
fication challenges for sequential object-oriented programs. Form.
Asp. Comput. J. 19(2), 159–189 (2007)

43. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D.,
Müller, P., Kiniry, J., Chalin, P.: JML Reference Manual. http://
www.jmlspecs.org (2008)

44. Meyer, B.: Applying design by contract. Computer 25(10),
40–51 (1992)

45. Rieken, J.: Design by contract for Java—revised. Master’s thesis,
Universität Oldenburg (2007)

46. Rieken, J.: Modern Jass. http://modernjass.sourceforge.net/ (2007)
47. Robby: Sireum. http://www.sireum.org (2009)
48. Robby, Chalin, P.: Preliminary Design of a unified JML representa-

tion and software infrastructure. In: Proceedings of the 11th Work-
shop on Formal Techniques for Java-like Programs (FTfJP’09),
Genova, Italy. July 2009

49. Robby, Dwyer, M.B., Hatcliff, J.: Bogor: An extensible and highly-
modular model checking framework. In: Proceedings of the ACM
SIGSOFT Symposium on the Foundations of Software Engineer-
ing, pp. 267–276 (2003)

50. Schirmer N.: A sequential imperative programming language syn-
tax, semantics, Hoare logics and verification environment. In:
Isabelle Archive of Formal Proofs (2008)

51. Smith, H., Harton, H., Frazier, D., Mohan, R., Sitaraman, M.: Gen-
erating verified Java components through RESOLVE. In: Proceed-
ings of the International Conference on Software Reuse (ICSR),
Virginia, USA. LNCS, vol. 5791, pp. 11–20 (2009)

52. Sun Developer Network.: Annotation Processing Tool. http://java.
sun.com/j2se/1.5.0/docs/guide/apt (2004)

53. Taylor, K.B.: A specification language design for the Java Model-
ing Language (JML) using Java 5 annotations. Masters thesis, Iowa
State University (2008)

54. Taylor, K.B., Rieken, J., Leavens, G.T.: Adapting the Java Model-
ing Language (JML) for Java 5 Annotations. Department of Com-
puter Science, Iowa State University, TR 08-06 (2008)

55. van den Berg, J., Jacobs, B.: The LOOP compiler for Java and JML.
In: Margaria, T., Yi W. (eds.) Proceedings of the Tools and Algo-
rithms for the Construction and Analysis of Software (TACAS).
LNCS, vol. 2031, pp. 299–312. Springer, Berlin (2001)

56. Wilson, T., Maharaj, S., Clark, R.G.: Omnibus: A clean language
and supporting tool for integrating different assertion-based veri-
fication techniques. In: Proceedings of the Proceedings of REFT
2005, Newcastle, UK. July 2005

57. Wing, J.M.: Writing Larch interface language specifications. ACM
Trans. Program. Lang. Syst. 9(1), 1–24 (1987)

58. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of
linked data structures. In: Proceedings of the ACM Conference
on Programming Language Design and Implementation (PLDI)
(2008)

59. Zee, K., Kuncak, V., Rinard, M.C.: An integrated proof language
for imperative programs. In: Proceedings of the ACM Conference
on Programming Language Design and Implementation (PLDI)
(2009)

123

http://www.jmlspecs.org
http://www.jmlspecs.org
http://www.jmlspecs.org
http://www.jmlspecs.org
http://www.jmlspecs.org
http://www.jmlspecs.org
http://modernjass.sourceforge.net/
http://www.sireum.org
http://java.sun.com/j2se/1.5.0/docs/guide/apt
http://java.sun.com/j2se/1.5.0/docs/guide/apt

	Towards an industrial grade IVE for Java and next generation research platform for JML
	Abstract
	1 Introduction
	2 Java Modeling Language
	3 JmlEclipse: inception and early elaboration phases
	3.1 Inception phase
	3.2 Early elaboration phase
	3.2.1 Feature set for the full range of verification
	3.2.2 Static verification features

	3.3 Initial architecture
	3.3.1 Overview
	3.3.2 JML Static Verifier

	3.4 ``Third Party'' features

	4 Initial architectural assessment and phase II redesign
	4.1 Successes and challenges
	4.2 JmlEclipse phase II architectural redesign

	5 JML Intermediate Representation (JIR)
	5.1 Design goals and rationale
	5.2 JIR definition
	5.3 JIR API for JML tool back-ends
	5.4 JIR API for JML tool front-ends
	5.5 JIR class file encoding
	5.6 JML expression encoding in JIR
	5.6.1 Quantified expressions
	5.6.2 Model specifications
	5.6.3 Inline specifications

	5.7 Alternatives to JIR
	5.8 Assessment

	6 Revised JmlEclipse architecture, current and future plans
	6.1 Redesign reduces coupling to JDT
	6.2 Towards supporting JML as a standard extension to Java
	6.2.1 A Java 5 annotation-based input syntax
	6.2.2 Java contract notation

	7 Assessment
	8 Related work
	8.1 Verification tool support for Java and/or JML
	8.2 Verification tool support for other languages

	9 Conclusion and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

