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Software Change Contracts

JOOYONG YI, DAWEI QI, SHIN HWEI TAN, and ABHIK ROYCHOUDHURY,
National University of Singapore

Software errors often originate from incorrect changes, including incorrect program fixes, incorrect feature
updates, and so on. Capturing the intended program behavior explicitly via contracts is thus an attractive
proposition. In our recent work, we had espoused the notion of “change contracts” to express the intended
program behavior changes across program versions. Change contracts differ from program contracts in that
they do not require the programmer to describe the intended behavior of those program features which are
unchanged across program versions. In this work, we present the formal semantics of our change contract
language built on top of the Java modeling language (JML). Our change contract language can describe
behavioral as well as structural changes. We evaluate the expressivity of the change contract language via
a survey given to final-year undergraduate students. The survey results enable to understand the usability
of our change contract language for purposes of writing contracts, comprehending written contracts, and
modifying programs according to given change contracts.

Finally, we develop both dynamic and static checkers for change contracts, and show how they can be used
in maintaining software changes. We use our dynamic checker to automatically suggest tests that manifest
violations of change contracts. Meanwhile, we use our static checker to verify that a program is changed
as specified in its change contract. Apart from verification, our static checker also performs various other
software engineering tasks, such as localizing the buggy method, detecting/debugging regression errors, and
classifying the cause for a test failure as either error in production code or error in test code.
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1. INTRODUCTION

Programmers often toil for hours or even days to find the root cause of a single per-
nicious “bug” or observed error. What makes debugging so difficult? The difficulty
in debugging primarily comes from the lack of capture of intended program behav-
ior. Whenever a test case fails, it is due to an “unexpected” observable event—an
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unexpected output, or a program crash. Yet, what is “expected” from the program is
hardly ever formally captured.

Program contracts, or design-by-contract programming [Meyer 1997; Burdy et al.
2005; Barnett et al. 2004], provide an alternative in this regard since they recom-
mend writing contracts to express intended program behavior. Contracts may appear
in the form of pre- and postcondition of methods, as well as invariant properties whose
correctness is preserved by the method execution. However, this puts the task of writ-
ing contracts squarely on the programmer. This typically leads to lack of widespread
adoption of program contracts by programmers [Parnas 2011].

In our previous paper [Qi et al. 2012], we have espoused the notion of “change con-
tracts” where the intended behavior of program changes is expressed in a customized
change contract language. Change contracts focus only on the program changes and
their intended semantic effect. We believe this eases the task of writing contracts for
several reasons. First of all, program behavior that is unchanged across versions does
not need to be captured. Second, while contracts describing the intended behavior of a
program typically capture the intended input-output relationship in a program, change
contracts also retain the flexibility of describing the output-output relationship across
program versions. Thus it can describe properties like

whenever in > 0 holds, out′ == out + 1

or even a property like

whenever out > 0 holds, out′ == out + 1,

where in denotes input, out′ denotes output of the updated program version, and out
denotes output of the previous version. As we show throughout this article, such de-
scriptions are likely to be more concise than a usual program contract of the following
form.

whenever ϕ(in) holds, out′ == f (in)

Here ϕ(in) is a constraint on the input, and the function application f (in) expresses the
intended output of the changed program version as a function of input in. Unlike in
our change contract where the outputs of two versions are compared to each other, a
program contract does not reveal changes explicitly. Also, in the preceding program
contract, both ϕ(in) and f (in) can often be fairly complicated. The additional flexibility
of relating the program outputs across program versions often leads to concise and
intuitive change contract specifications.

In this article, we study the expressivity/usability of our change contract language via
a detailed user survey as well as by developing change-contract-based infrastructures to
help debug change-related errors or verify the absence of such errors. The contributions
in this article are now stated in the following paragraphs.

Our change contract language is built on top of the Java modeling language
(JML) [Burdy et al. 2005]. Unlike conventional program contract languages which
typically provide pre/postcondition of methods, we describe how the postconditions of
the same method in two consecutive versions relate to each other, under certain pre-
conditions. Exceptional behavior, as well as structural changes (such as introduction or
removal of parameters/fields, etc.) and conditional refactoring (i.e., refactoring under
a certain condition), is also supported. We present in Section 3 our change contract
language along with its syntax and formal semantics.

To evaluate possible field usage of change contracts, we conducted a survey of sixteen
(16) final-year undergraduate students in a senior-year course at the National Univer-
sity of Singapore. The survey was administered as a mini-test with 20 questions lasting
60 minutes, accounting for 10% of the grade in the course. The students participating
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in the survey had no prior background of program contracts, change contracts, or JML.
They were only provided one tutorial on these topics in a single week’s lesson. The
questions in the survey involved comprehending/writing change contracts and modify-
ing code based on change contracts for small programs, as well as fragments of real-life
programs. The results from the survey point to the possible ease of using our change
contract language, with an overall correct answer rate of 92% from the respondents in
less than one hour for 20 questions.

Finally, we develop checkers for change contracts and show how they can be used
in maintaining software changes. We develop both dynamic and static checkers in
this article. Our dynamic checker monitors executables, whereas our static checker
analyzes source code to check change contracts. As usual in program analysis, both are
complementary to each other.

We use our dynamic checker to suggest tests, each of whose execution leads to a
violation of a given change contract. To do so, we first modify Randoop [Pacheco and
Ernst 2007] and apply it to a previous-version program to generate tests, each of whose
execution leads to a program state required to be changed according to a given change
contract. Afterwards, we run these generated tests against the updated version to
monitor whether the updated version behaves as specified in a given change contract.
We also provide tool support for repairing tests which are broken due to structural
changes across program versions (e.g., a new method parameter can be added in an
updated version). We present experimental evaluation results summarizing the size
of the change contracts, time taken to generate tests, and whether change contract
violation (if any) is detected. All the results are obtained from the well-known software
project Ant1, a Java library to build Java applications. The experiments point to the
efficacy of our dynamic checker in detecting the violations of change contracts.

Meanwhile, we use our static checker to verify that a program is changed as intended
(i.e., as specified in its change contracts). To do so, we customize the existing automated
program verification technique such as ESC/Java [Flanagan et al. 2002]. For scalabil-
ity, we support modular checking, that is, when encountered with a method call, our
modular checker interprets the change contract of this callee without looking into its
body (callees that do not change across versions are deemed to have implicit change
contracts that specify no change). Although modular checking is the norm in program
verification, it is not trivial to support modular checking with change contracts. In-
terpreting a change contract is significantly different from interpreting a program
contract. The conventional simple modular rule to interpret a program contract, that
is, asserting the precondition of a callee followed by assuming the postcondition of a
callee, cannot be used for a change, contract. To see this, consider again the change
relationship, “whenever out > 0 holds, out′ == out+1,” as the change contract of a callee.
Depending on whether out of the previous version is positive or not, out′ of the updated
version should either increase by 1 (if out > 0) or remain the same as before. This addi-
tional version-related context calls for an alternative modular rule that can interpret
a change contract correctly. We introduce in this article an alternative modular rule
for change contracts. We also show how we enforce this alternative rule in our static
checker.

Our static checker is an extension of OpenJML [Cok 2014]. We present experimental
evaluation results summarizing the size of the change contracts, time taken to verify
change contracts, and whether the change contract can be verified. All the results are
obtained from Joda-Time,2 an open-source date/time library for Java. The experiments
point to the efficacy of our static checker in verifying change contracts at reasonable

1http://ant.apache.org/.
2http://www.joda.org/joda-time/.
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Fig. 1. Change contracts are to be maintained in a version control system along with file changes and
commit message.

cost; verification takes on average 7.4 seconds, and we wrote, on average, 2.7 lines of
change contracts for methods that change across versions.

Finally, we also report various usage of our static checker. Using our static checker,
we perform not only verification, but also other tasks, such as: (1) localizing the buggy
method, (2) detecting/debugging a regression error, and (3) classifying the cause for a
test failure as either error in production code or error in test code. The change contracts
we used to evaluate our dynamic/static checker are available at the following Web site:
http://www.comp.nus.edu.sg/∼abhik/CC-survey/SCC.htm.

2. OVERVIEW

Figure 1 shows how change contracts are to be configured in the history of a software
system. Change contracts are to be maintained in a version control system (VCS) such
as Git or Mercurial. When a user commits changes to a VCS, not only file changes and
commit messages are stored in VCS as usual, but also change contracts can be stored
in a VCS at the same time. While file changes represent actual code changes, change
contracts capture the underlying intended changes.

Figure 2(b) shows an example of a change contract for the execute method of software
Ant. It almost looks like a typical JML annotation except that it uses a couple of extra
keywords such as “changed behavior” and “when signaled”. While the meaning of these
keywords is described in Section 3 in detail, changed behavior indicates that its following
contents are for a change contract, not for a program contract, and when signaled is used
to describe the output condition of the previous-version method while signals can be
used for the output condition of the updated version. While when signaled and signals
are for abnormal termination that signals an exception, output conditions for normal
termination can be described with when ensured and ensures. Meanwhile, to describe the
shared input condition of the previous/updated versions, a requires clause is used.

Notice that a change contract is provided as a separate file, instead of annotating the
program files. The change contract in Figure 2(b) comprises the contents of a contract
file XMLResultAggregator.scc, and describes behavioral changes between two consecutive
versions of Java file XMLResultAggregator.java.

The change contract of Figure 2(b) is a counterpart of a verbal description given in
a bug report of Figure 2(a). This bug report describes: (i) an observed symptom (i.e.,
“Fails with: "Use of the extension ...”) and (ii) necessary conditions to reproduce this
symptom (i.e., “broken on JDK 7 when a SecurityManager is set”). A change contract
expresses these descriptions programmatically. In our example, the preceding symptom
is described with a when signaled clause to specify that a behavior change is necessary
when a BuildException is signaled in the previous version along with the error message
described in that when signaled clause.

Meanwhile, a requires clause is used to describe the necessary condition to reproduce
the symptom. Its predicate expresses, using the standard methods of Java, the two
conditions to reproduce the symptom: (i) a SecurityManager is set and (ii) JDK version
is 7. In addition, it is also assumed that the destination XML file that is supposed to
be generated after a successful run of the execute method (i.e., the target method of the
aforesaid change contract) does not yet exist.
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Fig. 2. Examples of change contracts.

Once a symptom and reproduction conditions are recognized, one may wish to change
the behavior in a specific way. In the case of the prior example, it is obvious that
the same exception should not be signaled in the updated version. Instead: (i) the
execute method should terminate normally and (ii) the destination XML file should be
successfully generated. Notice in the previous change contract that these two intentions
are expressed with the signals clause (by using false as a predicate) and ensures clause,
respectively.

While the level of the intentions expressed in our first change contract example is
close to that of an end-user, lower-level intentions made by core developers of software
can also be expressed in a change contract. Figure 2(c) shows such a low-level change
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Fig. 3. DirectoryScanner.scc: a change contract involving structural changes such as adding/removing a
parameter/field.

contract for the resolveTypesFor method of Eclipse JDT (Java Development Tools)3. This
change contract equivalent to the JDT’s Bugzilla report number 388281 expresses
the intention to fix the mismatch between method.parameterNonNullness[0] (a boolean
value) and method.sourceMethod().arguments[0] (a bitmask). The when ensured clause of
Figure 2(c) describes that the bitmask was not properly set in the previous version; the
following ensures clause specifies that, in the updated version, the bitmask should be
properly set instead.

We use a pure model method, isNonNull, in Figure 2)(c) to improve the readability of
a change contract. A pure model method is essentially an extra specification-purpose
method whose execution does not alter the functional behavior of the program in a
noticeable way. In JML, upon which our change contract language is based, a pure
model method is described between “/*@ pure model” and “@*/”. It is often handy to
define a pure model method and use it in a change contract as a predicate.

One may argue that existing program contract languages such as JML can already
express the behavior described in the preceding examples. Indeed, one can write JML
specifications corresponding to Figure 2(b) and Figure 2(c) without using the change
contract’s when signaled and when ensured clauses. Instead, one can calculate the weakest
precondition (viz., input condition) under which the observed symptom (viz., output
condition) is bound to be reproduced, and write in a contract input-output relationship
instead of writing the output-output relationship of a change contract.

However, such specifications that solely rely on the input-output relationship are, in
general, not as intuitive as our change contracts for the following two reasons. First,
while change contracts can clearly show the symptoms observed in the previous version
such as throwing an exception, program contracts can hardly reveal these symptoms.
After all, program contracts do not distinguish the previous version from the updated
version. Second, it is often the case that the output-output relationship is simpler and
thus more comprehensible than its equivalent input-output relationship. For example,
in Figure 2(b), imagine calculating the weakest precondition that induces at the method
exit a BuildException along with the particular error message. Such a precondition can
be quite long and complex depending on how complex the method body and how specific
the symptom.

Our change contract can express not only behavioral changes but also structural
changes such as adding/removing a new method parameter/field. Figure 3 shows such
an example. In line 13, the removal of a parameter mode and the addition of a parameter
cs are described with modifiers /*@ old param @*/ and /*@ new param @*/, respectively.
Similarly, the /*@ new field @*/ modifier in line 3 describes the addition of a new field.

3http://www.eclipse.org/jdt/.
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Also, the “preserves when cs” clause in line 11 expresses the expectation that, when cs
is true, the updated version of findFile should find and return the same file as in the
previous version, given the same base and path. Meanwhile, the behavioral changes
expected to be made when cs is false (i.e., requires !cs in line 9) are also described in the
ensures clause in line 10. Lastly, the when required clause is used in line 8 to describe
the input condition of the previous version, because the input condition of the updated
version, that is, requires !cs, cannot be shared in the previous version; notice that cs
does not exist in the previous version.

3. CHANGE CONTRACT LANGUAGE

To express intended program changes, we extend a subset of JML [Burdy et al. 2005],
the de facto lingua franca when giving checkable formal specifications to Java pro-
grams. In fact, one of our goals in designing a change contract language is to be as close
to an existing popular specification language as possible to lower the learning bar-
rier, and our syntactic extension to JML is very limited. However, JML (or any other
specification languages), to the best of our knowledge, is not expressive enough to ex-
press program changes across two consecutive versions, and this requires to propose
nontrivial semantic extensions.

Notes on Expressivity. While the main objective of our change contract language is
to specify behavioral changes that occur between two consecutive versions of a method,
it is also possible to specify with this language accompanying structural changes such
as adding/deleting method parameters or fields. While our change contract language
captures the relationship among program variable values at the input/output points of
the previous/updated program versions, it is not powerful enough to express temporal
properties of changes in variable values, as in temporal logics. Lastly, as in JML, we
are concerned only with sequential Java programs and do not consider multithreading.

A change contract is specified above the signature of a method m as an annotation
between “/*@ changed behavior” and “@*/”. We call such a method mthe target method of a
given change contract. We require that expressions used in a change contract, including
method calls, must be free of side-effects and exceptions. Also, their execution must
terminate. A change contract is maintained as a contract file (e.g., XXX.scc) separated
from Java files.

3.1. Syntax

Figure 4(a) shows the syntax of our change contract language. The keywords in bold
face are extensions to the standard JML. A change contract starts with the keyword
“changed behavior” followed by clauses that describe the pre/postconditions of a common
target method of the previous/updated versions. To describe the pre/postconditions of
an updated version, we use the existing JML clauses: a requires clause for a precondi-
tion and ensures/signals clauses for postconditions; ensures expresses the postcondition
at normal method termination (i.e., termination without throwing an exception), and
signals the postcondition at abnormal method termination (i.e., termination with an
exception thrown). Meanwhile, to describe the counterparts of the previous version, we
introduce additional clauses: when required, when ensured, and when signaled. For simplic-
ity, we often use a shorthand notation (ϕ,ψ, θ ; ϕ′, ψ ′, θ ′) to mean the full change contract
shown in Figure 4(b).

In the figure, greek letters (i.e., ϕ, ψ, θ , and their primed variants) denote predicates,
and T1 and T2 represent exception types (i.e., subtypes of java.lang.Exception). Also,
variable x, which refers to the exception of type T1 (or T2) signaled when the previous
(or updated) version of the method exits, can appear in θ (or θ ′). One can consider x as
a quantified variable associated with quantifier when signals (or signals). Thus variable
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Fig. 4. Our change contract language.

capture should be avoided in θ and θ ′. Note that not all clauses need be present in a
change contract. When a certain clause is omitted, a default predicate for this clause
is used as detailed in Section 3.2.4.

A requires clause often is shared between the previous/updated versions as a common
precondition. A when required clause is used only when it is necessary to distinguish the
preconditions between the previous version and the updated version. For example, if
the precondition of the updated version depends on a newly added method parameter,
then the same precondition cannot be used for the previous version. In such a case, the
precondition of the previous version can be separately expressed with a when required
clause.

The keyword \prev constructs a “prev” expression that accesses the previous-
version value from an updated-version context. For example, one can write “ensures
x==\prev(x)+1;” to express the intention that the value of x at the post-state of the up-
dated version should be greater by 1 than the value of x at the post-state of the previous
version. Readers familiar with JML could find the similarity between \prev and the \old
of JML. While \old makes a value of a pre-state available at a post-state, \prev makes
a value of the previous version available at the updated version.

Our change contract language can also express structural changes such as addition/
removal of parameters/fields. As shown in Figure 3, a new parameter can be recognized
by the /*@ new param @*/ modifier. Conversely, a removed parameter is annotated with
the /*@ old param @*/ modifier.

When reading the method signature of a change contract, one can get the signature of
the previous version by including parameters annotated with /*@ old param @*/ and non-
annotated parameters while excluding parameters annotated with /*@ new param @*/.
The signature of the updated version can also be obtained in the opposite way. Notice
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that the orders of the parameters and parameter names are preserved in a change
contract. Similarly to parameter changes, field addition and removal are annotated
with /*@ new field @*/ and /*@ old field @*/ modifiers.

Lastly, clause “preserves when ϕ” is a syntactic sugar for the following combination of
clauses that dictate that, if ϕ holds at the entry of the updated version, then the output
should be preserved across versions.

/∗@ changed behavior
@ when required true ;
@ requires ϕ ;
@ ensure out == \prev(out ) ;
@ signals (Exception e) \typeof (e)==\typeof(\prev(e) ) && out == \prev(out ) ;
@∗/

In the preceding, out denotes method output such as the return value of the method.

3.2. Semantics

3.2.1. Execution Model. It is convenient to conceptually assume that two versions of
a program are run in parallel when considering the semantics of a change contract
between two versions of a program. Recall that a change contract concerns currently
only sequential programs as JML does, and the introduced parallelism is not intended
to interfere with Java’s multithreading. The overall semantic rule shown in Figure 5(b)
clarifies such a parallel execution model. Given two commands c1 and c2 that represent
the method bodies of the previous and updated versions, respectively, we assume they
are run in parallel as denoted with c1 || c2.

Nonetheless, not all parallel executions c1 || c2 are interesting to the users of a
change contract. For example, given a change contract, ensures \result==\prev(\result)+1,
of a method m(int x), one would expect the increase of the return value only when the
same integer value for parameter x is given to both versions. Roughly speaking, input
equality between the two versions needs to be assumed when considering a change
contract. However, naive input equality is not enough for two reasons. First, the prior
parameter x may not be of a primitive type but of a subtype of Object. If this is the
case, simple reference comparison is inappropriate. Second, there may be structural
changes such as addition of a method parameter or a field.

To address the first issue, we compare object graphs instead of object references.
Conventionally, two graphs are considered isomorphic if there is a unique one-to-one
correspondence between the vertexes and edges of the two graphs. If, in addition, all
the one-to-one corresponding vertexes that represent primitive values of the two object
graphs contain the same values, the two object graphs are considered isomorphic. We
extend this notion of isomorphism to the program state level as follows. Note that a
program state consists of a store σ and a heap h.

Definition 1 (Isomorphic Program States). Two program states (σ1, h1) and (σ2, h2)
are considered isomorphic to each other if, for all variables x that commonly exist in
the domain of σ1 and σ2, the two object graphs that σ1(x) and σ2(x) respectively refer to
are isomorphic to each other. We denote the fact that two program states (σ1, h1) and
(σ2, h2) are isomorphic to each other with notation (σ1, h1) ≈ (σ2, h2). As usual in Java
programs (and other object-oriented programs), the receiver of an object (i.e., this) is
considered an implicit parameter of a nonstatic method, and thus this is in the domain
of σ1 and σ2.

Note that, in Definition 1, heaps (h1 and h2) are consulted if necessary when con-
structing object graphs. As in variables, only those fields that commonly exist in h1 and
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Fig. 5. Semantic rules for given two method bodies c1 and c2 of the previous and updated version, re-
spectively; ⇓e and ⇓c represent reduction relations of big-step operational semantics for expressions and
commands, respectively.

h2 are compared to each other. This resolves the second issue about structural changes;
when comparing object graphs, we exclude method parameters and fields that are not
in common between two versions. Notice that our overall semantic rule in Figure 5(b)
has (σ1, h1) ≈ (σ2, h2) in its premise to force isomorphic inputs.

Our execution model based on isomorphic program states imposes one restriction. A
change contract should not contain an expression such as \prev(this)==this that compares
the reference of the previous version with the reference of the updated version, because
the reference value of a non-primitive variable will be different at each version. For the
same reason, an expression such as \prev(o.hashCode()) == o.hashCode() should be avoided.
In fact, programmers usually do not expect reference values to be preserved across
versions when making changes to their programs.

We impose one more restriction on our parallel semantics. Executing two versions of
a method in parallel should not interfere with each other. Recall that we use parallelism
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only for the purpose of analyzing behavioral changes across versions. To guarantee non-
interference, we maintain a disjoint heap for each version of a method. More precisely,
the domains of the two heaps, h1 and h2, are forced to be disjoint, and we denote such
a constraint with h1 ⊥ h2 as shown in the premise of our overall semantic rule (i.e.,
Figure 5(b)).

Once two input states (σ1, h1) and (σ2, h2) satisfy the isomorphism condition (i.e.,
(σ1, h1) ≈ (σ2, h2)) and the heap disjointness condition (i.e., h1 ⊥ h2), the two versions
are run in parallel in an obvious way without interfering with each other. As a result,
we obtain the reduction relation appearing in the conclusion part of the rule: 〈c1 ||
c2, (σ1, h1, σ2, h2)〉 ⇓c (σ ′

1, h′
1, σ

′
2, h′

2). Recall that c1 and c2 amount to the method body of the
previous and updated versions, respectively. Accordingly, input states (σ1, h1) and (σ2, h2)
amount to pre-states of the previous version and the updated version, respectively, and
output states (σ ′

1, h′
1) and (σ ′

2, h′
2), the post-states of the previous and updated versions,

respectively.

3.2.2. \prev Expression. Our prev expressions can be used in a change contract to refer
to the value of the previous version from the context of the updated version. The value of
\prev(E) is decided depending on where this prev expression appears. If \prev(E) appears
in an ensures clause or a signals clause (i.e., the postcondition of the updated version), E
should be evaluated in the post-state of the previous version (i.e., (σ ′

1, h′
1)). Meanwhile,

if it appears in a requires clause (i.e., the precondition of the updated version), E should
be evaluated in the pre-state of the previous version (i.e., (σ1, h1)). Such a difference
is captured in the two topmost rules in Figure 5(c) where notations “ensures 	” and
“requires 	” designate the clause in which a prev expression appears. The cases for the
signals clause are omitted because they can be treated identically to the cases for the
ensures clause.

Notice that a prev expression, regardless of where it appears, makes a context switch
from the updated version to the previous version. Such a context switch over a program
version made by a prev expression is orthogonal to the old expression’s context switch
from a post-state to a pre-state.

3.2.3. Update/Change Condition and Inference Rule. Given a change contract
(ϕ, ψ, θ ; ϕ′, ψ ′, θ ′) and two versions of a program that satisfy 〈c1 || c2, (σ1, h1, σ2, h2)〉 ⇓c

(σ ′
1, h′

1, σ
′
2, h′

2), we check whether the given change contract is satisfied using the
inference rule shown in Figure 5(d). We write 〈c1 || c2, (σ1, h1, σ2, h2)〉 	 (ϕ,ψ, θ ; ϕ′, ψ ′, θ ′) in
the conclusion part of the inference rule to mean that change contract (ϕ,ψ, θ ; ϕ′, ψ ′, θ ′)
is satisfied in the context of configuration 〈c1 || c2, (σ1, h1, σ2, h2)〉.

In order for a change contract to be satisfied, the precondition of the previous version
must be satisfied beforehand at the pre-state of the previous version. Such a condition
is expressed in the premise part of the rule as (σ1, h1) 	 ϕ; we write (σ1, h1) 	 ϕ if predicate
ϕ is satisfied at state (σ1, h1).

In addition, one of postconditions of the previous version (recall that there are two
kinds of postconditions, depending on whether the target method terminates normally)
must also be satisfied at the post-state of the previous version. Such a condition is
denoted in the inference rule as (σ ′

1, h′
1) 	 ψ∨(σ ′

1, h′
1) 	 θ . We say that the update condition

is satisfied if the preceding two conditions hold true, as described in the second line
of the inference rule. If the update condition holds, it means that a given input state
(σ1, h1) triggers in the previous version an execution whose behavior is intended to be
changed in the updated version.

Once the update condition holds, we next check another condition we call the change
condition to see whether the behavior of the execution of interest changes as intended.
The change condition is described in the third line of the inference rule. To see whether
the change condition is satisfied, we check the following two conditions. First, we
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Table I. Rules to Fill in Omitted Clauses with Default Predicates

Omitted clause Context Default predicate

when ensured ∃when signaled false
� ∃when signaled true

when signaled ∃when ensured false
� ∃when ensured true

when required ∃requires ϕ′ ϕ′
� ∃requires true

requires always true
ensures always true
signals always true

For explanation, refer to Section 3.2.4.

check whether the precondition of the updated version is satisfied at the pre-state of
the updated version (i.e., (σ2, h2) 	 ϕ′ of the rule). Note we can assume that (σ2, h2) is
isomorphic to (σ1, h1) because this is implied by 〈c1 || c2, (σ1, h1, σ2, h2)〉 ⇓c (σ ′

1, h′
1, σ

′
2, h′

2) in
the premise of the inference rule. Next, we check that all the postconditions of the
updated version are satisfied at the post-state of the updated version (i.e., (σ ′

2, h′
2) 	

ψ ′ ∧ (σ ′
2, h′

2) 	 θ ′). We assume that prev expressions appearing in ψ ′ or θ ′ are replaced
with their values obtained using their semantic rules explained earlier.

If both the update and the change conditions hold, we conclude that a given change
contract is satisfied under the given input states of the two versions of a program.
Meanwhile, we report a change contract violation only if the last condition of the
inference rule does not hold (i.e., ¬((σ ′

2, h′
2) 	 ψ ′ ∧ (σ ′

2, h′
2) 	 θ ′)) while the preceding

conditions hold.

3.2.4. Default Predicates for Omitted Clauses. All clauses of a change contract do not have
to be specified, as mentioned in Section 3.1. Default predicates are used for omitted
clauses, following the rule described in Table I.

If an ensures (or a signals) clause is omitted, ensures true (or signals true) is used by
default. To understand why true is used as a default clause for an ensures clause, recall
that, given a full change contract (true, ψ, θ ; true, ψ ′, θ ′),4 our change contract inference
rule in Figure 5(d) checks whether change condition ψ ′ ∧ θ ′ holds at the end of the
updated version whenever update condition ψ ∨ θ holds at the end of the previous
version. When omitting the predicate ψ ′ of the ensures clause and only the predicate
θ ′ of the signals clause is used, the change condition we want to check is true ∧ θ ′. Thus
the omitted predicate ψ ′ should be true. Similarly, the default predicate of an omitted
signals clause should be true.

Meanwhile, when omitting the predicate ψ of the when ensured clause, the default
value of ψ seems to be false at first, considering the update condition ψ ∨ θ . However,
the problem is that one can omit both when ensured and when signaled clauses simul-
taneously, as in the following change contract: ensures \result==\prev(\result)+1, which
describes the expectation that the return value of the updated version should be one
larger than the return value of the previous version. If this is the case, the use of false
as a default predicate makes the update condition false and, as a result, the change
condition is not checked. To avoid such situations, we assign a default predicate dif-
ferently depending on the context. If it is the case that only either of the when ensured
or when signaled clause is omitted, we use false as a default predicate for the omitted
clause. However, if both when ensured and when signaled clauses are omitted, we use true
as a default predicate instead.

4For simplicity of the description, we give true to the when required and requires clauses.
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Lastly, let us explain the case for when required. If there are no structural changes,
it is most likely that writers of a change contract would want to assume the same
precondition for the previous and the updated versions. We accordingly assign the
predicate of a given requires clause to the omitted when required clause.

3.3. Discussion

While intended changes can be expressed and checked through a change contract, it
is also of interest to developers to check whether there is a regression bug. To find a
regression bug, one can compare the output states obtained when isomorphic inputs
are given to the two versions. If the update condition of a given change contract does not
hold, inequality between two output states indicates a regression bug. As an example,
consider the following change contract that specifies that NullPointerException signaled
in the previous version should disappear in the updated version.

/∗@ changed behavior
@ when signaled (NullPointerException e) true ;
@ signals (NullPointerException e) false ;
@∗/
in t m( in t p) ;

If the previous-version method m does not signal a NullPointerException under the input
state Sin and instead terminates normally with an integer return value r, then the
aforesaid change contract implicitly specifies that the updated version should return
the same return value r when the same input state Sin is given. Two different return
values returned from two versions under the same input state indicate that there is
a regression bug. Without a change contract, it is difficult to distinguish a regression
bug from software progression, even if inequality between two output states is found.

Structural changes often involve conditional refactoring; the behavior of a method
should be preserved under a certain condition. For example, Figure 3 describes that
the behavior of method findFile should be preserved if the newly added parameter cs
has value true when the method is called, as described with preserves when cs.

4. USER STUDY

To evaluate possible field usage of change contracts, we conducted a survey of sixteen
(16) final-year undergraduate students in a senior-year course (formal verification of
embedded software) at the National University of Singapore in 2012.

4.1. Demographics

We asked seven (7) demographic questions. Almost all respondents responded that they
have experience in programming in Java for certain projects. Only two respondents
responded that they had equivalent experience with another programming language,
one with C++ and the other with Python. Meanwhile, all respondents responded that
they had used neither JML nor any other program contract languages before. Overall,
our participants can be considered equivalent to entry-level developers who have no
background of program specification.

4.2. Survey Questionnaire

Figure 6 shows two sample questions from our survey questionnaire that encompass
the diverse question types we describe in this section. Each of our questions falls under
primarily one of the following three types of questions.

(i) Read-Modify (RM)-type questions. In this type of question, we show a program and
its change contract and then ask respondents to modify the program in a way to reflect
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Fig. 6. Survey question samples. W, RD, and RM stand for Write, Read-Describe, and Read-Modify, respec-
tively. Also, B and S stand for behavioral changes and structural changes, respectively.

the given change contract. This type of question measures how easy it is to comprehend
change contracts.

(ii) Read-Describe (RD)-type questions. Here, we first show a program and its change
contract. We then ask respondents to describe the change contract in plain English.
This type of question double-checks the comprehensibility of change contracts.

(iii) Write (W)-type questions. In this type of question, we ask respondents to write a
proper change contract that they think can reflect a given verbal description of desired
changes. This type of question measures how easy it is to write change contracts.

We asked thirteen (13) questions in total (excluding 7 demographic questions). We
asked multiple questions for each type of questions, that is, 3 for the RM type, 5 for
the RD type, and 5 for the W type. All of these questions were constructed as open
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Table II. Distribution of Correct Answer Rates Depending on the
Criterion Used to Categorize Questions

Three Categorization Criteria
Question Type Program Source Change Kind

RM RD W Artificial AspectJ B S
100% 86% 93% 92% 92% 85% 97%

questions, not as multiple-choice questions; respondents were asked, depending on the
type of question, to write down a change contract (e.g., Figure 6(a)), fill in a blank with
a program statement or a program expression (e.g., Q2 of Figure 6(b)), and write down
a verbal description of a change contract (e.g., Q1 of Figure 6(b)).

Each of these 13 questions shows a fragment of a subject Java program. We used
in total 8 distinct Java program fragments; some fragments were reused for multiple
questions.

About two-thirds of these program fragments (i.e., 5 fragments) were carefully de-
signed by us for this survey. These fragments include a buggy version of a singly linked
list and its extension to a doubly linked list. To measure the effectiveness to real-life
programs, we also used three fragments of AspectJ that changed over consecutive
versions. We asked four questions using these AspectJ fragments.

Recall that our change contract language can deal with not only behavioral changes
(B-type changes) but also structural changes (S-type changes). We distributed both
kinds of changes evenly throughout the questions (i.e., 6 for B type and 7 for S type).

Our survey questionnaire can be downloaded at the following Web site:
http://www.comp.nus.edu.sg/∼abhik/CC-survey/SCC.htm. In addition, the responses of the
participants and a sample answer can be downloaded from the same Web site.

4.3. Survey Administration

We offered a single tutorial session about change contracts to the survey participants
before they took an open-book mini-test two weeks later (the education materials
we used for this tutorial can also be downloaded from the aforementioned Web site).
During the test, we measured the time each student spent filling in the questionnaire.
To encourage the students, we allocated 10% of credit points of the course for this
survey.

While grading the answers to the RD-type questions, we occasionally gave a half-
point when the answered verbal description about a change contract is neither en-
tirely correct nor entirely incorrect. No partial points were given for the other types of
questions.

4.4. Survey Results

Table II shows the results of our survey with the correct answer rate for each type of
question. For the correct answer rate of question-type T , we use the following formula.

(the total sum of scores of the T type questions)
(the total number of the T type questions) × (the total number of students)

The correct answer rate is high throughout all categories, forming the overall cor-
rect answer rate at 92%, calculated using the formula (the total sum of scores of all
questions) / (13 × 16). Meanwhile, the participants spent on average 53 minutes to
answer a total of 20 questions with the standard deviation being about 3 minutes. To
answer each question, it took on average 2 minutes and 40 seconds. Note that we did
not inform the participants that we were measuring the time.

Overall, our survey results indicate that the participants easily learned and used
change contracts. In our study, the correct answer rate was not affected by whether a
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subject program is artificially made or extracted from a real-life program (i.e., AspectJ).
Also, structural changes were more easily handled than were behavioral changes (97%
versus 85%).

4.5. Threats to Validity

As mentioned earlier, our survey was conducted with only one group of students taking
a particular course of a particular university. However, we also mentioned that our sur-
vey participants were final-year undergraduate students majoring in computer science
who can be considered entry-level developers.

Our survey fulfilled its purpose of gauging initial response to our change contract
language; our students easily learned and used our change contract language. However,
given the number of participants, a larger-scale study is necessary to confirm our
results. In particular, more sophisticated study is required to see the validity of several
interesting initial observations such as higher correctness rates in structural changes
than in behavioral changes and little difference between the correctness rates for
artificial programs and real-life programs.

5. FORMULATION OF CHANGE CONTRACT CHECKING (CCC)

Our change contract, as a formal description of software changes, is checkable in an
automatic way. If there is any discrepancy between a given change contract and actual
code changes, we report a violation of the given change contract. Furthermore, we
provide an explanation about why such a violation happens. Such an explanation can
be a test case that enables a user to observe a change contract violation. We can also
more directly show a counterexample path (sequence of statements) that leads to a
change contract violation.

Change contract checking can be performed either dynamically—by running
executables—or statically—by analyzing source code. We in this article describe both.
As well known, dynamic and static checking have their own advantages and disad-
vantages. In general, static checking can guarantee the absence of contract violations
with higher confidence than dynamic checking, when no contract violation is found.
Meanwhile, dynamic checking seldom sets off a false alarm, whereas a false alarm is
one of the key problems of static checking. These advantages and disadvantages of
dynamic/static checking are also inherited when checking a change contract.

However, we can mitigate the disadvantage of each analysis by exploiting the fact
that we deal with two versions of software, as will be described in detail in the fol-
lowing sections. Beforehand, we first formally describe the problem of change contract
checking.

Problem Definition. Before we develop dynamic/static checking for change contracts,
we first formally define the problem of change contract checking (CCC) for the following
full-blown (i.e., without omitted clauses) change contract, (ϕ,ψ, θ ; ϕ′, ψ ′, θ ′).

1 when required ϕ ; when ensured ψ ; when signaled ( T x ) θ ;
2 requ i res ϕ′ ; ensures ψ ′ ; s i gna l s ( T ′ x ) θ ′ ;

The meaning of each clause will be described shortly through the definition of CCC.
Since we are primarily interested in behavioral changes, we first define the behavior
of a deterministic method.

Definition 2 (Behavior). Given a deterministic method m whose method body is a
command c, we define the behavior of m (notated with B[m]) as the following possibly
infinite set of relations between an input state Sin and an output state Sout.

B[m] = {(Sin, Sout) | 〈c, Sin〉 ⇓c Sout}
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In the preceding, 〈c, Sin〉 ⇓c Sout refers to a semantic reduction that indicates that the
method body c reduces to the output state Sout when it starts with the input state Sin.

We will also use the following notations. S |= ϕ means that predicate ϕ is satisfied at
state S. Using dedicated predicate ex to denote an exception, Sout |= ex and Sout |= ¬ex
mean that an exception is thrown and not thrown in state Sout, respectively. Also,
Sout |= ((¬ex ⇒ ψ) ∨ (ex ⇒ θ )) means (Sout |= ¬ex ⇒ ψ) ∨ (Sout |= ex ⇒ θ ). Finally, we use m v1
and m v2, respectively, to refer to the method m at the previous (v1) and the updated
version (v2). We define CCC as follows.

Definition 3 (CCC). Given a full-blown change contract (ϕ,ψ, θ ; ϕ′, ψ ′, θ ′) of a method
m, we say that CCC succeeds in m iff the following two properties hold. For all (Sin, Sout) ∈
B[m v1] and (S′

in, S′
out) ∈ B[m v2],

(P1) Sin ≈ S′
in ∧ (Sin |= ϕ ∧ Sout |= ((¬ex ⇒ ψ) ∨ (ex ⇒ θ )) )

⇒ (S′
in |= ϕ′ ⇒ S′

out |= ((¬ex ⇒ ψ ′) ∧ (ex ⇒ θ ′)) );

(P2) Sin ≈ S′
in ∧ ¬(Sin |= ϕ ∧ Sout |= ((¬ex ⇒ ψ) ∨ (ex ⇒ θ )) )

⇒ Sout ≈ S′
out

CCC essentially compares the output states Sout and S′
out whenever their correspond-

ing input states Sin and S′
in are isomorphic to each other (i.e., Sin ≈ S′

in).5 There can be
two possibilities: the behavior of a method either changes (P1) or remains the same
(P2). The premise of P1 describes the condition in which the method should change its
behavior. In particular, its second conjunct describes which pattern of the behavior of
m v1 triggers behavioral changes in m v2. That is, m v2 should have a different behavior
only if: (1) m v1 satisfies the when required clause at its entry (i.e., Sin |= ϕ), and (2) m v1
also satisfies either the when ensured clause or the when signaled clause at its exit
(i.e., Sout |= ((¬ex ⇒ ψ) ∨ (ex ⇒ θ ))). When these two conditions are evaluated true, we
say that the update condition of a change contract holds.

In case the same input is used at both versions and the update condition holds, m v2
should satisfy the condition described in the conclusion of P1; that is, if the requires
clause is satisfied at its entry (i.e., S′

in |= ϕ′), then the ensures (signals) clause should
also be satisfied at its normal (abnormal) exit (i.e., S′

out |= ((¬ex ⇒ ψ ′) ∧ (ex ⇒ θ ′))). When
this is true, we say that the change condition of a change contract holds.

When P1 cannot be applied, P2 should hold instead. Notice in the premise of P2 that
the update condition is negated. As mentioned, P2 describes the behavioral preserva-
tion of a method. Thus the conclusion of P2 is Sout ≈ S′

out.
We note that when required and requires clauses usually have the same predicate

(i.e., ϕ = ϕ′), considering that Sin ≈ S′
in. It is only in some special cases (e.g., some

parameters exist only in one version) that one needs to constrain the input differently
depending on the version. In the remaining sections, we use only requires clause—
the omitted when required clause is assumed to have the same predicate as the requires
clause.

6. DYNAMIC CHANGE CONTRACT CHECKING (DYNAMIC CCC)

Figure 7 shows the workflow of our dynamic CCC. Our dynamic checker runs a set
of tests generated for the purpose of checking change contracts, and monitors the
executions of the two versions of a program to see whether there is any change contract
violation. The two versions of a program are instrumented appropriately to support
such monitoring.

5The definition of isomorphic program states is provided in Definition 1.
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Fig. 7. The workflow of our dynamic CCC.

Instead of running the two versions of a program in parallel as described in
Section 3.2, we run them in a sequential order, that is, first the previous version,
and next the updated version, while collecting information necessary to simulate the
parallel execution model of our change contract semantics. Note that the tests we use to
run the program are generated at the unit (method) level. These tests run the methods,
the behavioral changes of which are described in given change contracts.

Our dynamic CCC starts with generating tests satisfying the following two condi-
tions: (i) a test executes the target method and (ii) when the target method exits, the
update condition of a given change contract holds true (recall that if the update condi-
tion holds, the target method is expected to change its behavior). We call such a test
that satisfies the prior two conditions a relevant test. We provide a test generator in
our dynamic CCC toolset that can collect only relevant tests efficiently. Recall that
the update condition of a change contract involves only the states of the previous ver-
sion. Accordingly, our relevant-test generator considers only the previous system while
ignoring the updated system.

Some of such tests generated based on the previous system may fail to be compiled in
the context of the updated system if structural changes such as adding a new method
parameter are made to the updated system. If this happens, these broken tests must
be repaired. We thus provide a test repair tool in our toolset that can repair these tests
using the information in a change contract.

We now elaborate each of the three components of our dynamic checker (i.e., dynamic
change contract checking, relevant-test generation, and test repair), and then report
the experimental results.

6.1. Change Contract Checking

To support dynamic checking of change contracts, we use our custom compiler, an
extension of OpenJML [Cok 2014]. When we compile a Java source file, say C.java, its
corresponding change contract file, C.scc, is also looked up. If this change contract exists,
the resulting class file C.class is instrumented with this change contract. Recall that a
change contract is satisfied if the previous and updated versions satisfy, respectively,
the update condition and the change condition of this change contract. Accordingly,
we instrument the previous and updated versions differently. For example, only at the
previous version do we need store in the disk the boolean value of the update condition
of a given change contract.

To align isomorphic inputs between the two versions, the two instrumented sys-
tems, when encountered with the target method during the run, convert input states
(i.e., the states of parameters and the receiver) into XML graphs using XStream6.
Such XML graphs can be viewed as object graphs, the data format we assumed for

6http://xstream.codehaus.org/.
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input isomorphism in Section 3.2. Those two XML graphs of the previous and the up-
dated versions are compared to check input isomorphism. We used XMLUnit7 for this
comparison.

In addition to input states, the values of \prev expressions are also stored in the
disk while running the instrumented system of the previous version. Afterwards, the
instrumented system of the updated version uses these prestored values to replace
\prev expressions.

6.2. Test Generation

We extended a popular random test generator, Randoop [Pacheco and Ernst 2007], to
collect only relevant tests. Note that whether a test is relevant is decided at runtime
while Randoop is generating tests. In our initial experiment, it took too long (almost
five minutes in some instances) for Randoop to start generating relevant tests. We
made a couple of simple changes to Randoop to alleviate the problem.

First, our test generator selects the seed method with a 50% chance from specified
target methods, unlike the original Randoop that selects the seed method from all legal
methods that are in the scope of the tool. As target methods, we used either: (i) the
target method m of a change contract if m is public or (ii) public callers of m if m is
not public. Such target method specification can be automated with the help of static
analysis. The reason for assigning a 50% chance to the target methods (as opposed to
assigning 100% chance) is that, otherwise, Randoop does not consider other method
calls that may be necessary for constituting a relevant test.

The second change we made to Randoop is to address the following problem we found
in our initial experiments. It took particularly long for Randoop to generate relevant
tests in a case where the update condition of a change contract is satisfied only if void-
type methods are called to change the program state properly before the target method
is called. For example, if a target method is m2(int i), then the unmodified Randoop
opts for generating a sequence that ends with “m2(var2);” preceded by a sequence of
statements that ends with a statement to assign a value to variable var2, such as
“var2=m1(var1);”. This statement is again preceded by another statement to assign a
value to var1. Such a style of Randoop’s sequence generation tends to exclude void-type
method calls in the middle of a sequence.

To address the previous issue, we intersperse a statement sequence with random
void-type method calls. We also transform statements like “var1.m1(); var2.m2();” into
“var2.m1(); var2.m2();” to merge the receivers. We let such a transformation take place
with an 80% chance in our experiments.

Note that generally there is no guarantee that executing a relevant test in the
updated system will execute the target method with isomorphic input because only
the previous version was considered when constructing relevant tests. Obviously, by
considering the updated system as well, this problem can be avoided in exchange for
spending more time generating each test. We make a trade-off between the time cost
and the effectiveness of generated tests.

6.3. Test Repair

Consider a change contract whose target method m has different parameters in the
updated version, as shown in the following change contract fragment: public void m(/*@
old param @*/ int i, /*@ new param @*/ boolean b). Since only the previous system is looked
up when generating relevant tests, these tests fail to be compiled in the updated
system complaining about method signature mismatches. Our test repair tool repairs
such broken tests using a change contract.

7http://xmlunit.sourceforge.net/.
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Table III. The Subject Changes of Software Ant
for Our Experiment

Change Contract size

Old New Bug # Core Extra
0632cd b6c725 51668 4 0
c39b90 2f95b7 50515 2 10
32e664 f0e466 49271 4 4
a84f2e 1de96b 46172 3 0
cbda11 9a0689 N/A 2 0
dfa59d de3f32 N/A 5 4
5bee9d 1532f4 N/A 3 0
1de7b3 626f28c N/A 2 0
3a1518 aef2f7 N/A 3 0
f87075 d17d1f N/A 3 0

We extract change contracts from these changes.

First, it is easy to deal with old parameters; they can simply be removed. Meanwhile,
new parameters should be assigned proper values in repaired tests. Such values can
be obtained from the requires clauses of change contracts. In the preceeding example,
provided that the change contract contains “requires !b;”, one can infer that the value of
the new parameter b should be false. In general, by using automated theorem provers,
automatic inference of a new parameter value should be possible if the type of this new
parameter is primitive. For a non-primitive-type parameter, it should be possible to
use Randoop again and select a value that satisfies the requires clause of a given change
contract. Currently, in our tool, only the test transformation is automated while the
values for new parameters and new fields are given by a user.

6.4. Experiments and Evaluation of Dynamic CCC

We perform our experiments for our dynamic CCC on an Intel Core i5 CPU 650
(3.2 GHz × 4) processor, 4GB RAM, running Ubuntu 12.04 (32-bit) Linux. Our sub-
ject program was Ant 8, a popular tool for building Java-based systems. We chose Ant
mainly because it is a popular real-life open-source program, and also we had basic
understanding of it. The second reason is important because if one wants to write a
change contract, the intended change must be understood beforehand.

6.4.1. Three Sources of Change Contracts. Table III shows ten version changes from
which we extract change contracts. We prepared change contracts from three different
sources: (I) First, to reflect user intentions as faithfully as possible, we transformed bug
reports to change contracts as we did in the overview section (Section 2). In fact, the
first row of Table III corresponds to the example we used in Section 2. Notice the same
bug number (i.e., 51668) shown in the third column. Meanwhile, the first and second
columns show the first six Git snapshot IDs of the previous and updated systems, re-
spectively. While the the first four rows of the table are collected by transforming bug
reports, they are only partially effective in testing our dynamic CCC toolset. Although
relevant tests are successfully generated in all four cases, these tests are either passed
or abandoned (isomorphic input is not found sometimes due to the limit of our tool; see
Section 6.4.4) without reporting a change contract violation. (II) To see the efficacy of
our toolset in detecting change contract violations, we used incorrect program changes
of Ant found in our previous study [Qi et al. 2012]. These four defective cases are
shown between the 5th and 8th rows of the table. (III) Lastly, to see the efficacy of our
test repair tool, we additionally collected two structural changes (method parameter

8http://ant.apache.org/.
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Table IV. The Experiment Results for Our Dynamic CCC

Change Randoop Test generation Test repair Contract checking

Old New Tfirst (s) Tfirst (s) # of tests/m # of errors # of fixes # of passes # of violations
0632cd b6c725 290 5 17 0 0 17 0
c39b90 2f95b7 0.4 0.4 1 0 0 0 0
32e66f f0e466 62 9 4 0 0 4 0
a84f2e 1de96b 32 0.9 58 0 0 6 0
cbda11 9a0689 >300 0.2 252 0 0 0 250
dfa59d de3f32 >300 1 79 0 0 0 79
5bee9d 1532f4 1 0.3 762 1239 1239 172 506
1de7b3 626f28c 5 1 183 263 263 0 183
3a1518 aef2f7 0.3 0.2 1209 1832 1832 1209 0
f87075 d17d1f 0.2 0.2 955 2 2 955 0

additions) from Ant. The two last rows of the table correspond to these cases. Note that
structural changes were also found in two defective cases.

6.4.2. Contract Size. In each of the ten cases, only one change contract file is used and
its size is shown under the “Contract size” column of Table III. The “Core” subcolumn
shows the number of total clauses used in change contracts (e.g., the use of one requires
clause and one when ensured clause are counted as two), and the “Extra” subcolumn
the number of primitive statements used in optional auxiliary model methods (see
Figure 2(c) for the example of a model method).

6.4.3. Results. To see the efficiency of our modified Randoop in generating relevant
tests, we compare the time elapsed until the first relevant test is found during test
generation (we use the notation Tfirst for this in the table) in the original and modified
Randoop. Table IV shows the Tfirst information in unit of seconds (the tenths place
value is also shown when the time is less than 1 second) — the first Tfirst column for
original Randoop and the next one for our modified Randoop. In all cases, our modified
Randoop generated the first relevant test 1–1500× faster than the original Randoop. In
fact, in two cases, the original Randoop failed to find a relevant test within 5 minutes.

When using Randoop, its Java method pool was mainly provided through Randoop’s
“--classlist” option; the class for which a change contract was given was used as the main
source Randoop can use to compose tests. In eight cases, we also provided one or two
idiomatic statements (e.g., creating Java’s SecurityManager or a sequence of statements
to execute an Ant script provided in a Bugzilla report) as additional sources Randoop
can use for test generation. We occasionally (in three cases) informed Randoop about a
constant to use in generating tests (e.g., a string appearing in a change contract). We
always used the same method/constant pools for the original and our modified Randoop.

We let our test generator collect relevant tests for one minute (the numbers of col-
lected tests are shown under the “# of tests/m” column), and used these tests in checking
change contracts. In all four defective cases (i.e., the 5th to 8th rows), change contract
violations were successfully detected as indicated with the last column. Also, all the
syntactically broken tests (i.e., the last four rows) were successfully fixed.

6.4.4. Threats to Validity. Due to the randomness of Randoop, the numbers in third to
last columns of Table IV can be varied each time an experiment is performed, although
in our experience the gap was not significant. In addition, these numbers are also
affected by the limitations of our tool. For example, we found that XMLUnit, a tool
we used to check the isomorphism between inputs, occasionally categorized isomorphic
inputs as non-isomorphic due to the order sensitiveness of the tool in comparing object
graphs. Lastly, our experimental results are confined to a single subject Ant, and we
need to conduct experiments with more subjects to generalize the results we obtained
to other cases.
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Fig. 8. The workflow of our static CCC.

7. STATIC CHANGE CONTRACT CHECKING (STATIC CCC)

To perform static CCC, we customize the standard approach of automated program
verification. Figure 8 shows the overall flow of our approach. Given two versions of
source code we want to compare (we denote them with v1) and v2 and their change
contract, we compose a composed program (CP) by manipulating the ASTs (abstract
syntax trees) of the given source code and change contract. A CP implements the core
logic of CCC. More specifically, it interprets both v1 and v2 and compares their output
to check whether observed behavioral changes coincide with the changes specified in a
given change contract.

Conceptually, this composed program CP is interpreted “symbolically” with symbolic
input to v1 and v2. We perform such symbolic interpretation of a CP via a theorem
prover. To achieve this, we transform a CP into a verification condition (VC), which is
a logical formula a theorem prover can understand. If a theorem prover finds that this
VC is invalid, then this means there exists an input to the program under consideration
that leads to a change contract violation. On the contrary, if the VC is valid, we conclude
that program changes are verified against a given change contract.

In the rest of this section, we describe each step of the workflow in more detail. We
focus on the unique features of static CCC, leaving out the standard procedures such as
parsing and type checking. Throughout this section, we assume there is no structural
changes such as method name changes; we touch on structural changes at the last part
of this section.

7.1. Programming Language

For efficiency of description, we describe our static CCC on the following minimal
programming language. Note that our static CCC supports Java programs, and we
later describe Java-specific issues.

z ∈ Z x ∈ Variable E ∈ Expression Stmt ∈ Statement p ∈ Procedure-Name

E ::= z | x | Eb

Eb ::= true | false | E==E | E > E | !Eb | Eb && Eb | Eb || Eb | call p(E)

Stmt ::= x=E | return x | Stmt; Stmt | if Eb then Stmt else Stmt | while Eb do Stmt

Our minimal language is a typical imperative procedural language that can manipu-
late integers and booleans. Pointers are not part of our minimal language. However, our
language supports a procedure call with a call expression, call p(E). Expression call p(E)
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Fig. 9. The high-level structure of a composed program (CP).

invokes procedure p with call-by-value semantics, and returns a value of the ending
return statement of p.

To further simplify discourse, we assume that (1) a procedure takes only one argu-
ment, (2) a procedure always returns a return value, (3) there are no global variables,
and (4) a procedure call is deterministic and side-effect-free. These artificial assump-
tions are only for simplicity, and they are unnecessary for supporting static CCC. In
Section 7.7, we describe how we handle the extended features of the Java programming
language such as throwing exceptions and modifying fields.

7.2. Composing a CP (Composed Program)

To relate the two versions of a program (v1 and v2) to their change contract, we compose
a composed program (CP) that incorporates v1 and v2 and their change contract. We
express a CP using an extended programming language that additionally has, for
example, assume/assert statements.

Figure 9(b) shows the high-level structure of a CP, given two versions v1, v2, and their
change contract (see Figure 9(a)). We assume that the body of procedure p changes from
body1 to body2. The given change contract says that, whenever the input of procedure p
satisfies ϕ and the output of p satisfies ψ at v1, v2’s output is expected to satisfy ψ ′.

A CP consists of three parts. Part I establishes the basic assumption of CCC: the
inputs to v1 and v2 are isomorphic to each other. To force the procedure parameter x
to have the same value at v1 and v2, a CP has a statement “assume x v1==x v2”. We use
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suffixes v1 and v2 to distinguish between the variables of different versions. At Part
I, we also evaluate the requires clause ϕ of the given change contract—the common
input condition for v1 and v2—, and store the evaluated value before the program state
changes at subsequent parts.

Afterwards, Part II and Part III interpret v1 and v2, respectively. In the figure,
high-level notations �body1� and �body2� denote the interpretation of body1 and body2,
respectively. The main task of Part II is to check whether the update condition of a
given change contract holds. Recall that we expect behavioral changes between the two
versions only when the update condition holds. In our running example, the update
condition holds when the requires clause ϕ and the when ensured clause ψ are satisfied.

Meanwhile, Part III compares the outputs of v1 and v2. If the update condition
holds, we check whether the expected new output condition (the ensures clause ψ ′ in
our example) holds true, using an assert statement. Conversely, if the update condition
does not hold that is, this is the case where no behavioral change is expected, we check
the equivalence of the return values of v1 and v2.

To interpret body1 and body2 in a CP, we transform each statement in those bodies
following the standard procedure used in automated program verification. One excep-
tion is procedure calls, because they require significantly different handling than in
conventional program verification due to the differences between change contracts and
program contracts. In the subsequent section, we explain these differences and describe
how we handle procedure calls.

Assuming that body1 and body2 are interpreted correctly, our CP is sound in the
following sense.

THEOREM 7.1 (SOUNDNESS OF CP). If our composed program CP is correct (i.e., no as-
sertion error is possible), then CCC (see Definition 3) succeeds.

PROOF. Part I of CP establishes Sin ≈ S′
in. Continuously, Part II establishes either: (1)

Sin |= ϕ ∧ Sout |= ψ, in which case the update condition is true, or (2) its negation. Therefore
the premises of (P1) and (P2) of CCC are established by interpreting Part I and Part II.
(Full-fledged premises as in Definition 3 can be obtained by using the refined CP of
Figure 14(a).) Subsequently, Part III asserts two different conditions, depending on the
value of update condition. If update condition is true, which corresponds to (P1) of CCC,
then our CP asserts ψ ′, which matches S′

out |= ψ ′ in the conclusion of (P1). Note that
S′

in |= ϕ′ of (P1) also holds because, in our CP, we assume ϕ and ϕ′ are identical with
each other. Meanwhile, if update condition is false, which corresponds to (P2) of CCC,
then our CP checks whether the outputs of both versions are identical with each other,
which matches the conclusion of (P2), Sout ≈ S′

out.

7.3. Modular Handling of Procedure Calls via Change Contracts

When encountered with a procedure call, modern contract checkers espouse modular
checking since looking into the body of a callee can be costly. Modular checking in-
terprets the contract attached to a callee without looking into the body of a callee.
For example, if a callee p has a program contract consisting of a precondition ϕ and a
postcondition ψ, one can treat the call of p with the following simple Hoare triple.

{ϕ} call p(x) {ψ}

If precondition ϕ is satisfied before calling p, one can assume that postcondition ψ is
satisfied after calling p, assuming that the program contract of p is correct (this can
be verified separately, hence modular checking). Such modular treatment of procedure
calls is proven critical in the literature for scalable and systematic analysis [Flanagan
et al. 2002; Müller 2002; Leavens 1991; Berdine et al. 2006]. Following this trend, we
also support modular checking.
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Fig. 10. The axiomatic rules to interpret modularly a procedure call expression call p(x); the p v1 and p v2
refer to the procedure p of version v1 and v2, respectively. The conclusion of [PRESERVE-RULE] means
the return values of p v1(x) and p v2(y) are the same as each other.

However, handling a procedure call with its change contract is significantly different
than in program contract. The same simple rule shown earlier cannot be applied when a
change contract is attached to a procedure because a change contract does not describe
an absolute input-output relationship, unlike in a program contract. Instead, a change
contract describes a relative relationship between the two versions of a procedure.
Figure 10 describes such relationship as two axiomatic rules where p v1 and p v2 refer
to the procedure p of version v1 and v2, respectively. We assume that procedure p has
a change contract shown in the middle of Figure 9(a).

Notice in the first rule (i.e., [CHANGE-RULE]) that the premise contains a Hoare triple
{ϕ} call p v1(x) {ψ}, which denotes the fact that the update condition of a given change
contract is satisfied (i.e., the requires and when ensured clauses are satisfied). Recall
that if the update condition is satisfied, we expect the procedure to change its behavior
at the next version. Therefore the conclusion of this first rule is {ϕ} call p v2(y) {ψ ′}. That
is, ψ ′ instead of ψ is assumed satisfied, provided that procedures p v1 and p v2 are called
with the identical input (i.e., x==y in our simple language). Meanwhile, the second rule
((i.e., [PRESERVE-RULE])) is for the remaining case where the update condition of a
given change contract is not assumed. In this case, the output of the two versions of a
procedure are assumed identical, that is, in our simple language the two return values
are identical to each other, as we denote with call p v1(x) == call p v2(y) in the conclusion
of [PRESERVE-RULE]. We describe how to handle procedure calls that have side-effects
in Section 7.7.2.

Overall, our two modularity rules are sound in the following sense.

THEOREM 7.2 (SOUNDNESS OF MODULARITY RULES). Our two modularity rules are sound
with respect to the CCC defined in Definition 3. That is, if the premise of the rule is valid,
then its conclusion is also valid.

PROOF. Our modularity rules are used under the assumption that the callee p satis-
fies its change contract. If the premise of [CHANGE-RULE] is valid, then the premise of
(P1) of CCC is satisfied. Following the conclusion of (P1), the conclusion of [CHANGE-
RULE] is also valid. Recall our current assumption that ϕ′ is identical with ϕ, and ex is
false. The soundness of [PRESERVE-RULE] is proved in a similar way.

Our two modularity rules essentially describe how to interpret a call of procedure
p v2, that is, procedure p used in v2, based on how a call of procedure p v1, that is,
p used in v1, is assumed to be interpreted. In [CHANGE-RULE], p v1 is assumed to
satisfy the update condition of the change contract of p, while in [PRESERVATION-
RULE], p v1 is assumed not to satisfy the update condition. While performing static
CCC, we conservatively consider both situations separately because, in our modular
reasoning framework where the body of p is not looked into, we cannot know whether
the update condition is satisfied. If p has no change contract, however, we only consider
[PRESERVATION-RULE], because no behavioral change is expected at all. Technically,
one can consider ψ of the rules as false and, as a result, only [PRESERVATION-RULE]
can be activated.
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When p v1 and/or p v2 are called multiple times, it is necessary to properly align each
p v2 with its matching p v1. Consider the following two versions of a program in which
procedure p is called twice at each version.
1 / / p rev ious vers ion ( v1 )
2 i n t x = i n ;
3 i n t r1 = c a l l p v1 ( x ) ;
4 i n t y = −x ;
5 i n t r2 = c a l l p v1 ( y ) ;

1 / / updated vers ion ( v2 )
2 i n t x = − i n ;
3 i n t r1 = c a l l p v2 ( x ) ;
4 i n t y = −x ;
5 i n t r2 = c a l l p v2 ( y ) ;

In the preceding, variable in refers to the input of the program. Recall that CCC is
performed with the same input to both versions. In this example, p v1(x) in line 3 (left)
should be aligned with p v2(y) in line 5 (right) because, at both sites, the procedures
are called with a parameter whose value is the same as in. For a similar reason,
p v1(y) in line 5 (left) should be aligned with p v2(x) in line 3 (right). The general rule
about procedure call alignment is to align two procedure calls residing in two different
versions when they take the same input (in the case of our current simple language,
their parameters). This is why the aforesaid two rules, that is, [CHANGE-RULE] and
[PRESERVATION-RULE], have an equation x == y in their premises. The description
about how we enforce the prior input-based procedure call alignment is provided in
Section 7.4.

When there are aligned callees between the two versions, our modularity rules can be
applied to constrain the behavior of the two versions. If there is no p v1 call aligned with
a p v2 call, however, this p v2 call is left unconstrained, which can lead to a spurious
change contract violation. In practice, modularity rules are particularly handy when
reasoning about how the behavioral changes of one procedure are propagated to the
callers of the changed procedure. Even if a caller does not change its procedure body,
its behavior would change according to the changes made to its callee.

7.4. Enforcing Modular Handling of Procedure Calls

We enforce our modularity rules of Figure 10 in our CP (composed program). More
specifically, we transform each procedure call into the CP fragment shown in Figure 11.

We earlier noted that both [CHANGE-RULE] and [PRESERVATION-RULE] should be
considered for each procedure call. To check both rules, our CP fragment uses a non-
deterministic branch (see if(*) in line 7). If the then branch is chosen nondeterministi-
cally, the update condition {ϕ} call p v1(x) {ψ} is established by assume �ψ�9 (ϕ is already
established beforehand in line 6). Thus, at the aligned procedure call at version v2,
[CHANGE-RULE] is enforced. Conversely, if the else branch is taken, [PRESERVATION-
RULE] is enforced instead.

We earlier also noted that procedure calls should be aligned semantically based on
the parameter values of procedure calls. To consider this, let us revisit the following
versions of a procedure.
1 / / p rev ious vers ion ( v1 )
2 i n t x = i n ;
3 i n t r1 = c a l l p v1 ( x ) ;
4 i n t y = −x ;
5 i n t r2 = c a l l p v1 ( y ) ;

1 / / updated vers ion ( v2 )
2 i n t x = − i n ;
3 i n t r1 = c a l l p v2 ( x ) ;
4 i n t y = −x ;
5 i n t r2 = c a l l p v2 ( y ) ;

Suppose that the change contract of procedure p has the following when ensured
clause.

when ensured \ r e s u l t > 0;

In the preceding, \result refers to the return value of the procedure. We explicitly rep-
resent the return value of callee p v1 with an uniterpreted function p v1(x). The quote

9�ψ� represents the interpretation of ψ .
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Fig. 11. The CP fragment for a procedure call expression call p(x).

expression ’(call p v1(x)) in Figure 11 denotes this uniterpreted function. Suppose that
the when ensured clause of p is nondeterministically assumed satisfied in line 3 of v1,
and dissatisfied in line 5 of v1. Then, we have the following constraint.

p v1(in) > 0 ∧ ¬(p v1(-in) > 0)

Let us move on to the updated version. At line 3, the procedure is called with pa-
rameter -in. Since the current constraint entails ¬(p v1(-in) > 0), [PRESERVATION-RULE]
should be applied. How do we enforce this? Our solution is that, whenever interpreting
p v2, we also (modularly) interpret p v1. Note that in Figure 11, p v1 is interpreted at
Part I before interpreting p v2 at Part II. While interpreting p v1, only the else branch
of if(*) can be considered. If the then branch is taken, then the assumption established
there (i.e., p v1(-in) > 0) conflicts with the already-established constraint ¬(p v1(-in) > 0).
As a result, the update condition flag is not turned on, and [PRESERVATION-RULE] is
enforced at Part II. Conversely, [CHANGE-RULE] is applied at line 5 of version v2.

THEOREM 7.3 (SOUNDNESS OF THE CP FRAGMENT FOR A PROCEDURE CALL). The interpre-
tation of our CP fragment for a procedure call (see Figure 11) correctly enforces our
two modularity rules (see Figure 10).

PROOF. Consider two (semantically) aligned procedure calls p v1(x) and p v2(y) where
x == y. Then, at Part I of Figure 11, the following three execution paths are possible
when interpreting p v1(x).

Case1. requires clause at line 6 is true, and the then branch is taken at line 7. As a
result, variable update condition becomes true, and {ϕ} call p v1(x) {ψ} holds true.
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Case2. requires clause at line 6 is true, and the else branch is taken at line 7. As a
result, variable update condition remains false, and ¬({ϕ} call p v1(x) {ψ}) holds true.

Case3. requires clause at line 6 is false. As a result, the variable update condition re-
mains false, and ¬({ϕ} call p v1(x) {ψ}) holds true.

When p v1(y) is interpreted later on, the same execution path is taken at Part I
because of the reason we explained earlier. Subsequently, at Part II, {ϕ} call p v2(y) {ψ ′}
is established only when update condition is true (also, {ϕ} call p v1(x) {ψ} holds true). In
the other cases (when ¬({ϕ} call p v1(x) {ψ})), call p v1(x) == call p v2(y) holds true.

7.5. Modular Handling of Loops by Means of Procedure Calls

In the literature of program contracts (e.g., Flanagan et al. [2002], Barnett et al. [2006],
and Ahrendt et al. [2004]), either of the following two approaches are taken to handle
loops: (1) loop unrolling, where the behavior of each loop is underapproximated by
unrolling this loop a finite number of times; or (2) a modular approach using loop
invariants, where each loop is associated with its loop invariant that takes a role of the
contract for this loop.

When using change contracts instead, both approaches can be taken again with
adjustments. First, loop unrolling is straightforward. One simply needs to unroll each
loop of both versions the same number of times.

Meanwhile, substantial adjustment is necessary for the second modular approach.
Note that a loop invariant is the program contract for the corresponding loop in the
sense that it describes the behavior of an individual loop. However, what we need is the
change contract of a loop that describes how the behavior of this loop changes across
versions. We use a different specification than a loop invariant to describe the changes
of a loop for the same reason that we use a change contract instead of a program
contract to describe the changes of a procedure.

Figure 12 shows how we specify the behavioral changes of a loop. First, Figure 12(a)
shows the two versions of procedure sum. The only difference between them is the
operators used for the loop exit conditions (i.e., i < k → i <= k). As a result, the sum of
v1 adds the numbers from 1 to k − 1, while its counterpart of v2 adds the numbers from
1 to k. The value of k is given as a parameter of sum.

Notice that we annotate these loops with “//@ set s=sum loop(k);”. Apparently, this
annotation does not express a loop invariant. It is instead an assignment statement.10

This assignment is used by our static checker and not executed at runtime. The left-
hand side of this assignment is variable s whose value changes over the loop. The right-
hand side expression “call sum loop(k)” calls an auxiliary specification-purpose procedure
sum loop. This procedure sum loop does not exist in the original source code.

We use these new-style specifications of loops in interpreting loops in a modular way.
Our static checker skips over loops. Instead, it uses the specifications of loops. Since
each of these specifications calls a procedure, we can reuse our modular handling of
procedure calls.

More specifically, in our example, we assign to a new procedure sum loop a change
contract that describes the behavioral differences between the loops of two versions.
The left-hand side of Figure 12(b) shows the change contract of procedure sum loop. As
long as variable k is greater than equal to one, the return value at v2 (i.e., \result) is
k more than the the return value at v1 (i.e., \prev(\result)). This matches the fact that
the loop in v2 iterates one more time than the one in v1 as long as k >= 1 holds and,
as a result, the final value of variable s, that is, the value s has when the loop exits, is
greater in v2 than in v1 by the last added value, that is, k.

10“//@ set” is a JML notation to designate a specification-only assignment.
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Fig. 12. An example to describe how loops can be handled modularly.

Given the aforesaid loop annotations and the change contracts of sum loop, our
checker recognizes that the final value of variable s is k more in v2 than in v1. As
a result, our checker concludes that the change contract of procedure sum, that is, the
procedure that contains the loop, is satisfied (the change contract of sum is shown in
the right-hand side of Figure 12(b)).

In summary, we annotate a loop with a procedure call, and express behavioral
changes of a loop as a change contract of the procedure used in this loop annota-
tion. This way, we reduce the problem of modular handing of loops into the problem of
modular handling of procedures, which we already addressed.

Comparison with Loop Invariants. In our example, the loop invariant of the first loop
(the loop of v1) is s==k(k-1)/2, whereas that of the second loop is s==k(k+1)/2. Subtraction
of k(k-1)/2 from k(k+1)/2 is indeed k, as we describe with a change contract in Figure 12(b)
(i.e., \result == \prev(\result) + k).

In this comparison, we observe again the following difference between program con-
tracts and change contracts. If one is only interested in the difference across versions,
one can directly specify this difference while omitting unnecessary details. It is usually
easier to know the difference between two similar loops than the loop invariants of
these loops.

7.6. Generating a VC (Verification Condition)

A composed program CP described earlier leads to a change contract violation when one
of the assertions in CP is violated. In the CP shown in Figure 9, we use two assertions,
both of which appear in Part III where outputs of versions v1 and v2 are compared. One
assertion checks whether the output of v2 changes as expected following a given change
contract. The other assertion checks whether output is preserved across versions when
no behavioral change is expected according to a given change contract.

If one can find an input to a CP that leads to the violation of one of the assertions in
this CP, then this input witnesses the violation of a given change contract. Otherwise,
it can be concluded that the actual program changes respect a given change contract.
It is well known that the problem of finding such a violation-inducing input can be
reduced to the problem of satisfiability.

We use the standard approach based on a verification condition (VC) that is auto-
matically generated from a given program. A VC is a first-order logic predicate that
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Fig. 13. A counter-example path witnessing a change contract violation.

can be valid only when the program cannot reach an error state. In our context, the
validity of the VC implies there is no input that leads to the violation of the assertions
in the source CP. The validity of a VC can be checked by querying the satisfiability of
the negation of this VC.

We customize OpenJML [Cok 2014] to generate a VC. Given a composed program
CP, our customized OpenJML generates a VC in the format of SMT2 [Barrett et al.
2012]. Then, an automated theorem prover such as Z3 [de Moura and Bjørner 2008] is
used to check the validity of a VC.

If a VC is proven invalid, Z3 can generate a witness for a change contract viola-
tion. Using this information, our static checker generates a counterexample report.
Figure 13 shows such a counterexample report. As shown in the figure, a counterex-
ample report describes an execution path that leads to a change contract violation,
as well as the values of variables and expressions that appear in this execution path.
In Figure 13, the upper part describes the previous version, and the bottom part
the updated version. This counterexample corresponds to a regression error between
Joda-Time versions 1.4 and 1.5. Indeed, the last line of the figure, that is, “\result ==
\prev(\result) === false”, shows that the return values of the two versions are different
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Fig. 14. Refinements of the basic CP shown earlier to deal with abnormal termination.

(recall that \result and \prev(\result) represent the return value of the previous and
updated version, respectively).

7.7. Java-Specific and Miscellaneous Issues

In this section, we address Java-specific issues such as handling exceptions and fields.
We use the terms “procedure” and “method” interchangeably in this section. We also
discuss a few miscellaneous issues worth mentioning in this section.

7.7.1. Handling Exceptions. A Java method can terminate not only normally but also ab-
normally by throwing an exception. In fact, many fixes of Java programs are related to
handling such abnormal termination. For example, an exception thrown unexpectedly
in the previous version should disappear in the updated version. As described earlier,
our change contract language can handle abnormal as well as normal termination.

To handle abnormal termination, we refine the basic CP shown earlier. Figure 14
shows our refinements. Our refined CP distinguishes an abnormal termination of a
procedure from a normal termination. In Figure 14(a), the exception thrown at body1,
that is, the body of the previous version procedure, is stored in variable exception v1
and thus, by checking whether exception v1 is null, we can distinguish whether body1

terminates normally or abnormally. In case body1 terminates abnormally, we check
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whether the given when signaled clause is satisfied in the same way as we check the
when ensured clause for the normal termination case. Likewise, body2, that is, the body
of the updated-version procedure, can be handled in a similar way (we omit describing
this refined handling of body2 in Figure 14(a)).

We also refine our modular handling of callees. As a simple example, consider a case
where a NullPointerException is unexpectedly thrown from a callee method m. In this case,
a user can assign to callee m the following change contract.

/∗@ changed behavior
@ when signaled ( Nu l lPo in te rExcep t ion ) t r ue ; / / whenever NPE i s thrown at v1
@ s igna l s ( Nu l lPo in te rExcep t ion ) f a l s e ; / / v2 should not throw NPE
@∗ /
i n t m( i n t x ) ;

As before, our modular checker interprets the preceding change contract instead of
looking into the body of callee m. The behavior of m at v2 changes when a NullPointerEx-
ception is thrown from v1. However, when an exception which is not a NullPointerException
is thrown from v1 given a certain input (this makes the aforesaid when signaled clause
unsatisfiable), the behavior of m is preserved across versions. Similarly, when m termi-
nates normally at v1 without throwing an exception, the behavior is preserved again.

Similar to how we represent a return value of a method with an uninterpreted func-
tion, we also represent a (potential) exception of a method with another uninterpreted
function. Notice in Figure 14(b) that we use an uninterpreted function p v1 abnormal(val)
to represent an exception thrown from procedure p of version v1 when value val is
passed to p as its parameter. Similar to normal termination, this uninterpreted func-
tion is further constrained by a given when signaled clause. For example, in the case
where the when signaled clause of our running example is assumed to be true, the type
of p v1 abnormal(val) is constrained to be NullPointerException.

7.7.2. Callees that Read/Write Fields. Java methods are not necessarily side-effect free.
They can update the values of fields. Consider the following change contract involving
a field value change.

/∗@ changed behavior
@ when ensured t h i s . name == n u l l ; / / whenever name has n u l l a t the method e x i t i n v1 ,
@ ensures t h i s . name . equals ( " " ) ; / / name should have an empty s t r i n g " " ins tead i n v2 .
@∗ /
i n t p ( i n t x ) ;

The prior change contract describes the change of field name. As we represent the re-
turn values of the two versions of a procedure p with uninterpreted functions p v1(x) and
p v2(x), we represent the field values via other uninterpreted functions, p v1 field value(x)
and p v2 field value(x). These two new uninterpreted functions can be constrained by the
given when ensured clause and ensures clause, respectively. In the previous example,
our static checker can maintain a constraint p v1 field value(x)==null to consider the case
where field name has null at the method exit in v1.

Recall that, to align callees called in different versions, we compare the input of
callees. We earlier showed how we align two versions of callees called with the same
parameter values. In the presence of fields, we extend our alignment mechanism to
accommodate the fields read by a callee. More specifically, we extend uninterpreted
functions such as p v1(x) into p v1(this v1, x, f), where f refers to a field read by method p
and this v1 to the implicit receiver of a method call.

The fields that are read/written by a callee can be specified with a JML’s accessible/
assignable clause, and our prototype tool consults accessible/assignable clauses when con-
structing uninterpreted functions. Automatic inference of these clauses is also possible
through side-effect analysis [Sălcianu and Rinard 2005], while our prototype tool cur-
rently does not contain it.

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 3, Article 18, Pub. date: May 2015.



TOSEM2403-18 ACM-TRANSACTION April 27, 2015 20:39

Software Change Contracts 18:33

7.7.3. Field Updates. Consider the following two simple versions of a Java program.
/ / p rev ious vers ion ( v1 )
x . f = x . f + 1 ;

/ / updated vers ion ( v2 )
x . f = x . f + 2 ;

The change between the aforesaid two versions can be described with the following.
ensures x . f == \prev ( x . f ) + 1 ;

However, special care is necessary to ensure the previous simple change contract. The
essence of the problem is that we compose two versions of a program into a single
program CP (composed program) that interprets v1 and v2 sequentially. As a result,
the field updates that occur at v1 can affect the field values at v2, unless special care
is taken.

We address this problem by customizing the conventional VC (verification condition)
generation method. In a VC, a field is represented with an array. For example, a field
access expression x.f is encoded as f [x], where f is an array corresponding to field f,
and x is a variable corresponding to x. What about x.f = x.f+1 of the prior example? The
standard way to encode a field update is to update the array representing the field.
When encountered with a field update x.f = x.f+1, the original array f is updated into f ′

as follows.

f ′[r] =
{

f [r] + 1 if r equals x,
f [r] otherwise

We customize the preceding standard encoding in two ways. First, to enforce input
equivalence at the entries of versions v1 and v2, we use the same array f at both
versions to access the initial value of field f. Second, we confine the scope of an array
update only to that version where an update takes place. In other words, even after
array f is updated into f ′ at version v1, this array update is not propagated into version
v2. By updating field arrays separately in each version, we prevent the update of a field
at one version interfering with the interpretation of the other version.

7.7.4. Handling \prev Expressions. To check the change contract of the aforesaid example,
we also need to be able to handle a \prev expression. For this, we make use of our
customized VC described before. We obtain the value of \prev(x.f) through the last field
array for f defined at version v1.

7.7.5. Structural Changes. Even in the presence of signature changes across ver-
sions, for instance, class/method names may change and method parameters may be
added/deleted, CCC can still be performed. One additional task in this case is to match a
method at v1 with a method at v2 (this is trivial when there are no structural changes).
We perform this match based on the information available in change contracts. Recall
that one can describe in a change contract how a class/method name changes and which
parameters/fields are added or removed across versions.

7.7.6. Multiple-Change Cases. A change contract can express multiple behavioral
changes of a method. For example, the change contract in Figure 15(a) describes
that the behavior of the updated version changes differently depending on how the
previous-version method terminates. The first case corresponds to the situation where
the previous-version method (v1) terminates abnormally, throwing an NullPointerExcep-
tion, as described in line 3. If this is the case, line 4 dictates that a NullPointerException
should not be thrown in the updated version (v2) when the same input is given. What
if v1 terminates normally, without throwing an exception? Depending on which input
is given to v1, v1 may terminate either normally or abnormally. The second case of the
change contract corresponds to the normal termination case where field name has null
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Fig. 15. Change contracts expressing multiple behavioral changes.

as its value, as described in line 7. If this is the case, line 8 dictates that name should
be an empty string instead at the end of v2.

Our checker supports such multiple-change cases. To handle multiple-change cases,
we refine the CP shown in this section such that the information about which case is
under consideration is maintained in a CP. Such extension is straightforward, and we
omit to describe details.

As a side note, the same multiple behavioral changes described previously can also
be expressed with a single case, as shown in Figure 15(b). In the figure, ex is an uncon-
strained specification-only variable (field) that is supposed to indicate whether an ex-
ception is thrown. Only when ex is randomly chosen to be true are the given when signaled
and signals clauses activated. Similarly, the when ensured and ensures clauses are acti-
vated only when ex is chosen to be false.

7.8. Experience with Our Static Checker

In this section, we report our experience of using our checker implemented on top of
OpenJML [Cok 2014]. We applied our checker to 18 change instances extracted from
various versions of Joda-Time11, an open-source date/time library for Java. Table V
shows the overall results we obtained after running our checker on our system –
Ubuntu 12.04 (32-bit) Linux; Intel Core i5 CPU 650 (3.2GHz×4) processor; 4GB RAM.

In Table V, we group the 18 change instances into 4 different groups depending on the
use of our checker. We used our checker not only for verifying program changes (usage
V), but also for localizing the buggy method (usage L), detecting/debugging regression
errors (usage R), and classifying the causes for test failures (usage C). The “Usage”
column of Table V shows these four different usages.

We collected the majority of change instances from the Joda-Time dataset of
iBUGS [Dallmeier and Zimmermann 2007]. This dataset is organized by bug num-
ber (shown in the second column of the table); each bug number is linked to its bug
report and the source code of the pre-fix and post-fix revisions. We wrote change con-
tracts based on the provided bug reports. We also described in change contracts the

11http://www.joda.org/joda-time/.
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Table V. Experimental Results

Revision Diff Contract Size (lines) Kind Time (s)

Usage Bug # Previous Updated − + CC (lines/mthds) JML B S Total Z3 Verified

V

1788282

pre-fix post-fix

98 82 3/1 2 ✔ ✘ 7.7 1.4 (18%) ✔

1877843 62 81 3/1 23 ✔ ✘ 8.1 1.9 (23%) ✔

2111763 9 14 2/1 3 ✔ ✘ 6.7 7.5 (4%) ✔

2487417 25 28 2/1 5 ✔ ✘ 6.2 4.7 (7%) ✔

2783325 (iBUGS) 2 14 (1 + 1)/1 0 ✔ ✔ 6.2 2.6 (4%) ✔

2903029 78 45 2/2 4 ✔ ✘
6.5 1.0 (16%) ✔
6.5 0.6 (10%) ✘

L 2025928
pre-fix post-fix

8 6 22/7 6 ✔ ✘

7.6 1.0 (14%) ✔
8.5 1.5 (18%) ✔
7.0 1.4 (21%) ✔

(iBUGS) 8.5 1.7 (20%) ✔
9.5 3.2 (35%) ✔
8.0 0.9 (11%) ✔

R 1887104 7755b c41ef 95 222 2/1 10 ✔ ✘
8.4 1.0 (12%) ✘

7755b a478f 1417 3524 6.7 0.9 (15%) ✔

C – 7b179
7b179′

2038 962 (8 + 3)/3 4 ✔ ✔
7.9 2.3 (30%) ✘

7b179′′ 7.1 1.9 (28%) ✘
1c524 6.7 1.8 (27%) ✔

Pre-fix / post-fix indicates the previous / updated revision provided through the iBUGS dataset; in the first
column, V stands for Verification, L Localization, R Regression, and C Classification; each usage is detailed
in each section.

structural changes if they occur. We provided our static checker with these change con-
tracts, along with a pair of the source code for pre-fix and post-fix revisions available
through the iBUGS dataset.

We also collected some change instances directly from the Joda-Time repository12 to
experiment with change instances that are not available in the iBUGS dataset. For
these non-iBUGS cases, we mark, in the “Previous” and “Updated” columns, the first
five digits of Git snapshot IDs of the previous and updated revision, respectively.

The size of lexical changes made across revisions is shown in the “Diff” column, where
the number of deleted (−) and inserted (+) lines are marked. Meanwhile, the size (i.e.,
the number of lines) of contracts is shown in the “Contracts” column, where the size of
change contracts (CC) is distinguished from the size of program contracts (JML) used
to remove false alarms; we did not count the header line “changed behavior”, and the
library of JML contracts, for example, the program contract for Object.equals. In the
majority of cases, it was enough to write a change contract for one method. However,
we occasionally wrote change contracts for more than one. To inform the average size
of a change contract per method, we mark in the “CC” column (the total number of
lines of change contracts) / (the number of methods assigned a change contract). For
example, 22/7 means that 22 lines were used for the change contracts of 7 methods. On
average, we wrote 2.7 lines of change contracts for each method. Sometimes, we also
described structural changes in change contracts (e.g., when refactoring was involved).
To distinguish the portion of a change contract used to describe structural changes
from the rest, we mark, for instance, (8 + 3)/3, which means that in 3 methods, 8
and 3 lines were used to describe behavioral and structural changes, respectively. The
“Kind” column more explicitly shows the kind of changes—among behavioral (B) and
structural (S) changes—that were described in change contracts.

12https://github.com/JodaOrg/joda-time.git.
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To finish each CCC session, it took on average 7.4 seconds (s), as shown in the “Total”
column. A theorem prover (i.e., Z3 [de Moura and Bjørner 2008]) consumed on average
27% (i.e., 2s) at the last phase of checking (the “Z3” column shows its breakdown), more
time was consumed to parse and type-check source code. Lastly, the “Verified” column
shows the result of checking: either verified (✔) or failed (✘). In the following sections,
we explain how to interpret these results in relation to four usages of our checker.

7.8.1. Verifying Intended Program Changes. The most basic usage of our checker is to ver-
ify that a program is changed as intended (i.e., as specified in change contracts). Our
checker successfully verified program changes except in one case, where Z3 failed to
handle a ∀-quantified expression used in a contract. As a result, our checker issued
a false alarm. In other words, our checker is incomplete. In fact, it also inherits the
unsoundness of its underlying platform, OpenJML; some errors, such as, overflow of
arithmetic expressions can be missing. The sources of unsoundness and incomplete-
ness of OpenJML can be found in Cok [2014]. However, this soundness / completeness
issue is orthogonal to the problem of CCC. In general, the techniques to improve sound-
ness/completeness in checking program contracts can also benefit CCC.

7.8.2. Localizing the Buggy Method. The method that manifests an error is not necessarily
buggy. Rather, it is often one of its callees (or a callee of a callee) that is buggy. For
example, one bug report of Joda-Time (bug 2025928) reports that method print does not
behave as expected (i.e., nothing is output when “0” should be output). However, in fact,
it turns out that print itself is not buggy. Instead, another method getFieldValue is found
to be buggy; print eventually calls getFieldValue before it returns, and the wrong return
value of getFieldValue propagates to print, where an error is manifested. In such a case
where the method that manifests an error (e.g., print) is not buggy itself, one first needs
to localize the buggy method (e.g., getFieldValue).

We found that our checker can help localize the buggy method. We first started with
writing a change contract of print, reflecting our intention to fix the manifested error.
Our initial trial of verification failed. By looking at the generated counterexample, we
were able to find that one of the callees (i.e., printTo) should change its behavior to
satisfy the given change contract. Once we assigned a proper change contract to this
callee, CCC succeeded. That is, the change contract of print was successfully verified,
assuming that the change contract of printTo is correct. To see whether the assumption
we made is true, we tried to verify printTo. Again, our initial verification trial failed, and
we repeated looking for suspicious method calls in a counterexample to assign proper
change contracts to them. We repeated this procedure until we reached the buggy
getFieldValue method whose change contract was successfully verified, without having
to assign change contracts to callees. The L section of the table shows the experimental
data obtained through this repeated procedure, with the top row corresponding to print
(where an error is manifested), the next row to a callee of print, and so on, and finally
at the bottom row to getFieldValue, the buggy method.

7.8.3. Detecting/Debugging Regression Errors. We earlier showed in Figure 13 a coun-
terexample that witnesses a regression error. This regression error takes place between
revision 7755b and c41ef of Joda-Time where code changes are made to fix a problem
about DST (daylight saving time) cutover. We write a change contract corresponding to
this intention, that is, fixing a bug about DST cutover, and feed such change contract
to our static checker along with the two revisions 7755b and c41ef.

Our checker was able to report a regression error along with a counterexample of
Figure 13. Notice the verification failure mark (✘) at the end of the first row of the
R section of Table V. Meanwhile, the next row shows the result when we replace
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Fig. 16. The predefined change contract for a test method.

a buggy-fix version c41ef with a correct-fix version a478f. In this case, our checker
successfully verifies program changes against a given change contract.

7.8.4. Classifying the Cause for a Test Failure. As mentioned in Section 1, a test failure
can be caused by the error in product code or test code. Classifying this cause for a test
failure is, on its own, a research problem [Hao et al. 2013]. We found that our checker
can help distinguish the cause for a test failure. The idea is to assign a change contract
to a test. The change contract of Figure 16 expresses the intention that the test should
pass in the updated version whenever it passes in the previous version. This change
contract can be predefined and applied to any test method.

We applied this change contract to a test in Joda-Time revision 7b179 (i.e., testCon-
structor long DurationType1). This test in its body calls several methods. Among them, two
methods change both their names and behaviors at the next revision (1c524). We as-
signed these two methods the change contracts describing behavior/structural changes.
Given these change contracts along with a pair of source code of the previous (7b179)
and updated revision (1c524), our checker successfully completed verification (see the
last row of the table), indicating that a test was correctly modified.

Meanwhile, to check the efficacy of our checker in detecting the obsoleteness of a
test, we prepared two variations of the previous-version (7b179) test; they served as
obsolete tests in our experiment. In the first variation (7b179′), we changed the names
of the callees correctly (assuming that renaming is trivial), but did not update the
oracles affected by the behavioral changes of the product code. In the second variation
(7b179′′), we additionally updated the oracle affected by the first callee, but did not do
the same for the second callee. Our checker successfully detected the obsoleteness of
these two tests. As expected, it failed at verification (see the first two rows of the C
section of the table), indicating that a test began to fail in the updated version, given
changes of the methods under testing. Also, a generated counterexample shows which
oracle fails.

What if a checker issues no warning while a test fails when actually run? This can
happen because modular checking interprets method calls based on their contracts, not
on their actual bodies. For example, the actual behavior of a callee under testing may
be different from the intended behavior specified in its change contract. The conformity
of a callee to its change contract should be checked separately. If this is the case, it is
evident that a callee does not conform to its intended changes. Thus one can conclude
that a test fails because of an error in the production code.

7.8.5. Discussion. As mentioned, we often used not only change contracts but also
program contracts to remove false alarms. We found that the size of these program
contracts varies depending on a change instance, whereas the size of change contracts
is more or less the same (i.e., 2.7 lines/method). However, in many cases, these program
contracts tended to be simple and similar to each other. For example, we used the
common program contract “signals (UnsupportedOperationException) false” for 14 out of 23
program contracts used at bug 1877843 (for the purpose of removing false alarms,
specifying partial behaviors is sufficient).
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Our experience is restricted to a single subject (Joda-Time), and more experiments
are desirable to validate some of our observations such as an average size of change
contracts.

8. RELATED WORK

8.1. Design by Contract

Design by contract (DbC) [Meyer 1992] influenced the design of many program-level
specification languages such as Eiffel [Meyer 1997], JML [Burdy et al. 2005], and
Spec# [Barnett et al. 2004]. In DbC, each method has its contract typically in the form
of pre- and postconditions. And the contract in DbC (i.e., program contract) roughly
means the following two things. First, a method has to guarantee its own postcondition
whenever its precondition is satisfied. Second, when a method is called, it is the caller’s
responsibility to guarantee the callee’s precondition.

Such a concept of a contract is significantly different from the concept of a change con-
tract. A change contract captures the intended behavioral/structural changes between
two program versions rather than the behavioral contracts within a single program.
Unlike a program contract that makes an input-output relation, a change contract
makes an output-output relation. In other words, an updated-version method has to
guarantee its postcondition ψ ′ whenever its previous-version counterpart satisfies its
own postcondition ψ. Meanwhile, when a method m is called in the updated version, the
caller does not have to guarantee ψ, that is, the postcondition of m’s previous version
(contrast this with a program contract where the caller should guarantee the callee’s
precondition). Instead, if ψ does not hold, then m should produce the same output across
versions.

Program contracts are typically checked either by extended static checking
(ESC) [Flanagan et al. 2002; Cok and Kiniry 2004; Barnett et al. 2006] or runtime
assertion checking (RAC) [Cheon and Leavens 2002]. ESC checks program contracts at
compile time. It first generates verification conditions from program code and accom-
panying program contracts. Afterwards, these verification conditions are discharged
via automated theorem provers. Meanwhile, RAC checks program contracts at run
time. It translates program contracts into executable assertions and weaves these as-
sertions into the program to obtain an instrumented program. Then, by running this
instrumented program, violation of program contracts can be reported if one of these
assertions fails during the run.

Both RAC and ESC have been explored in this article. Our dynamic checker cor-
responds to RAC, and static checker to ESC. Both of our checkers are significantly
different from those for program contracts, due to the facts that: (1) the semantics of
a change contract is different from the semantics of a program contract, and (2) two
versions of a program are analyzed at the same time.

8.2. Regression Testing and Debugging

Regression errors constitute an important class of errors. Traditionally, it has been
interesting to select and prioritize tests from a large test suite to expose regression
errors efficiently without having to test the entire test suite [Rothermel et al. 2001;
Chen et al. 1994; Gupta et al. 1992]. More recently, Jin et al. [2010] proposed a method
that, given program changes, automatically generates tests that stress these program
changes. These tests are executed on both the previous and updated systems, and after-
wards all the observed behavioral differences between the two versions are analyzed
and presented to the user. Without a specification about intended changes, however,
users have to manually go through all the reported differences across program ver-
sions to validate these differences. We envision that, by combining change contracts
and regression testing, these manual efforts can be significantly reduced.
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Fig. 17. Comparing DAC to CCC.

Even if a regression error is found, one has to understand why such regression error
took place before fixing it. In this regard, there have been efforts to debug regression
errors [Qi et al. 2009; Zeller 1999]. The lack of formal specifications, however, has
hampered extending these research results beyond debugging regression errors. We
believe that change contracts can enable debugging other types of errors related to
software evolution, such as incorrect implementation of a new feature and incorrect
bug fixes.

8.3. Regression Verification and Relative Verification

Regression verification (RV) [Godlin and Strichman 2009, 2013] and other similar ap-
proaches [Böhme et al. 2013; Korel and Al-Yami 1998] compare two versions of a
program in search of regression errors. In essence, it is the equivalence between two
programs that is checked (regression is a counterexample for equivalence). Meanwhile,
our checker assures not only intended equivalence (against the implicit assumption
of behavioral preservation), but also intended differences (against the explicit specifi-
cation of change contracts). In this sense, CCC (change contract checking) subsumes
RV.

Differential assertion checking (DAC) [Lahiri et al. 2013] is a technique that checks
whether v2 (the updated version) is as safe as v1 (the previous version). In other
words, it checks whether v2 is safe relative to its previous version v1. Unlike in RV,
behavioral preservation does not have to be guaranteed across versions. Even if v2
behaves differently from v1, relative safeness can be proved if no assertion violation
is found in v2. DAC proves that by checking whether all those assertions appearing
in v2 are satisfied, provided that all thos assertions appearing in v1 are assumed
satisfied. Consider Figure 17(a) as an example paraphrased from Lahiri et al. [2013].
While version v1 is buggy because an illegal array access a[MAX] is possible there, this
problem is fixed at version v2. DAC succeeds in this example because: (1) DAC assumes
that v1 passes all those instances of “assert Valid(i)” where i = 1, 2, . . . , MAX; and (2) the
same assertion appearing v2 must also be true in all instances considering that i can
be 1, 2, . . . , MAX-1.

DAC can be viewed as one instance of CCC. The change contract shown in the left-
hand side of Figure 17(b) amounts to the intention of DAC; if no assertion is violated at
v1 (i.e., v1 terminates normally as specified as “when ensured true”), then AssertionError,
which is thrown when the assertion of an assert statement is violated, should not be
thrown at v2 as described in the signals clause. However, CCC can perform more than
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DAC by using a different change contract. For example, one can use the change contract
in the right-hand side of Figure 17(b) to be more faithful to the intention of the change,
that is, fixing a bug manifested by AssertionError. When this alternative contract is
applied, our checker reports a warning reflecting the fact that v2 is not a complete fix;
when using a[i], the length of array a should be guaranteed to be greater than i.

In summary, CCC subsumes RV and DAC. For methods that do not have change
contracts, CCC performs RV. We can also easily change this default action to DAC by
enforcing the predefined change contract for DAC when no change contract is given.
Furthermore, the use of a few lines of change contract pushes the checking scope of
CCC beyond its default action to the extent that arbitrary program changes can be
verified. This makes an interesting parallel to model checking [Clarke et al. 1999];
while model checking can, by default, check the absence of deadlock, other properties
can also be checked when a few lines of specifications (e.g., temporal logic formulas)
are provided.

8.4. Specifying/Checking Changes

Hawblitzel et al. [2013] also independently introduced specifications for program
changes named mutual summaries, which can be viewed as change contracts for
Boogie [Barnett et al. 2006] programs. Boogie, as a low-level programming language,
is significantly simpler than Java. Accordingly, mutual summaries are simpler than
change contracts, for example, having no explicit consideration of abnormal termination
nor implicit assumption of behavioral preservation. This simplicity of programming/
contract languages makes the problem of contract checking simpler. Instead, the poten-
tial impact on mainstream programmers is less immediate. On the contrary, our change
contract language is designed to be used by Java programmers with little additional
effort. For better user friendliness, our change contract language has constructs such
as when ensured and when signaled that are absent in mutual summaries. As a result, a
programmer can write “when ensured ψ ; ensures ψ ′;” instead of having to write “ensures
\prev(ψ) ==> ψ ′”—the latter akin to a mutual summary. While both change contracts
express the same behavioral changes, the former more clearly shows the expected dif-
ferences between two versions, that is, when ψ is ensured in the previous version, a
programmer needs to ensure a new behavior ψ ′ in the updated version.

Hawblitzel et al. [2013] also presented modular static checking of mutual summaries.
To support modular checking, they directly manipulate the verification condition by
adding to it an axiom whose essence can be paraphrased as: ∀x̄ : f v1(x̄) ∧ f v2(x̄) ⇒
f v1 v2(x̄). That is, whenever f v1(x̄) that is called in v1 is aligned with f v2(x̄) called
in v2, their mutual summary (i.e., f v1 v2(x̄)) is enforced. Note that we do not use
quantifiers to support modular checking. While it is too early to tell which approach is
advantageous, it is well known that the use of quantifiers often causes an incomplete
verification result, that is, the verification condition can be neither confirmed nor
refuted. In addition, the use of quantifiers tends to increase the time cost. As de Moura
(the key developer of Z3) said, “as a rule of thumb, we should avoid quantifiers whenever
possible” [de Moura 2012].

Differential assertion checking (DAC) [Lahiri et al. 2013], described in Section 8.3,
uses mutual summaries under the hood to specify relative safeness. DAC is performed
in the form of modular static checking. Unlike in Hawblitzel et al. [2013], however, a
forall quantifier is not used to align callees of two different versions. Instead, static
checking is performed with each of all possible combinations of paris between a call
expression of procedure p v1 (a procedure p at version v1) and a call expression of
p v2 (p at version v2). As a result, if p is called twice at both v1 and v2 as in the
example shown in Section 7.4, then 2 × 2 different combinations are included in the
composed program. On the contrary, we align callees using uninterpreted functions,
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without explicitly enumerating all possible combinations; these combinations are tried
implicitly inside a theorem prover if necessary. Note that modern theorem provers such
as Z3 are generally quite efficient in dealing with combinations when quantifiers are
not involved.

8.5. Specifying/Checking Intended Changes vs. Summarizing Actual Code Changes

While change contracts capture intended behavioral/structural changes across program
versions, there has been work to capture actual changes of program behaviors (i.e.,
semantic differences) given two program versions. Jackson and Ladd [1994] suggested
a tool that summarizes the comparison of the two sets of dependence relations between
the input and output of a C program procedure of the previous version and the updated
version, respectively. For example, if variable x depends on only itself in the previous
version whereas it depends on another variable y in the updated version, one can
guess that program behavior around x would be different between these two versions.
More recently, Person et al. [2008] exploited symbolic execution to compare program
behaviors of the two versions and, as a result, could provide more accurate functional
input-output relations of each version than mere dependence relations. SymDiff [Lahiri
et al. 2012] can also do the same but, under the hood, it generates verification conditions
and passes them to an SMT solver.

We believe that comparing these two kinds of changes, that is: (i) actual program
changes provided by the aforementioned tools and (ii) intended program changes pro-
vided through change contracts, can help with debugging evolving programs.

9. CONCLUSIONS

In this article, we have followed the thesis that program changes can be easily expressed
through change contracts. Writing such change contracts is often easier and also more
intuitive than writing program contracts. This is not only because one can directly
focus on changes, but also because one can conveniently express the output-output
relationship between program versions with a change contract. Our user study also
indicates positively that change contracts can be easily learned and used by entry-level
developers.

We have also presented two kinds of checkers for change contracts: a dynamic checker
and a static checker. We have shown the efficacy of our dynamic checker in generating
tests that manifest the violation of change contracts. Also, the efficacy of our static
checker in verifying program changes against change contracts has been shown. Apart
from verification, we also successfully used our static checker for various software en-
gineering tasks such as localizing the buggy method, detecting/debugging a regression
error, and classifying the cause for a test failure to blame either product code or test
code.

ACKNOWLEDGMENTS

We thank David Cok (supported by NSF grants ACI-1314674, CNS1228930) for helping us use OpenJML
and jSMTLIB.

REFERENCES

Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese, Reiner Hahnle, Wolfram
Menzel, Wojciech Mostowski, Andreas Roth, Steffen Schlager, and Peter H. Schmitt. 2004. The KeY tool.
Softw. Syst. Model. 4, 1, 32–54.

Mike Barnett, Bor-Yuh Evan Chang, Robert Deline, Bart Jacobs, and K. Rustan M. Leino. 2006. Boogie: A
modular reusable verifier for object-oriented programs. In Proceedings of the 4th International Sympo-
sium on Formal Methods for Components and Objects (FMCO’06). 364–387.

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 3, Article 18, Pub. date: May 2015.



TOSEM2403-18 ACM-TRANSACTION April 27, 2015 20:39

18:42 J. Yi et al.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. 2004. The Spec# programming system: An overview.
In Proceedings of the International Conference on Construction and Analysis of Safe, Secure, and Inter-
operable Smart Devices (CASSIS’04). 49–69.

Clark Barrett, Aaron Stump, and Cesare Tinelli. 2012. The SMT-LIB standard version 2.0. Tech. rep. SMT-
LIB. http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf.

Josh Berdine, Cristiano Calcagno, and Peter W. O’hearn. 2006. Smallfoot: Modular automatic assertion
checking with separation logic. In Proceedings of the 4th International Conference on Formal Methods
for Components and Objects (FMCO’06). 115–137.

Marcel Bohme, Bruno C. D. S. Oliveira, and Abhik Roychoudhury. 2013. Partition-based regression verifica-
tion. In Proceedings of the International Conference on Software Engineering (ICSE’13). 302–311.

Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry, Gary T. Leavens, K. Rustan
M. Leino, and Erik Poll. 2005. An overview of JML tools and applications. Int. J. Softw. Tools Technol.
Transfer 7, 3, 212–232.

Yih-Farn Chen, David S. Rosenblum, and Kiem-Phong Vo. 1994. TestTube: A system for selective regression
testing. In Proceedings of the International Conference on Software Engineering (ICSE’94). 211–220.

Yoonsik Cheon and Gary T. Leavens. 2002. A runtime assertion checker for the Java modeling language
(JML). In Proceedings of the International Conference on Software Engineering Research and Practice
(SERP’02). 322–328.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. 1999. Model Checking. The MIT Press.
David R. Cok. 2014. OpenJML: Software verification for Java 7 using JML, OpenJDK, and Eclipse. In

Proceedings of the 1st Workshop on Formal Integrated Development Environment (EPTCS’14). 79–92.
David R. Cok and Joseph Kiniry. 2004. ESC/Java2: Uniting ESC/Java and JML. In Proceedings of the

International Conference on Construction and Analysis of Safe, Secure, and Interoperable Smart Devices
(CASSIS’04). 108–128.

Valentin Dallmeier and Thomas Zimmermann. 2007. Extraction of bug localization benchmarks from history.
In Proceedings of the 22nd IEEE/ACM International Conference on Automated Software Engineering
(ASE’07). 433–436.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata.
2002. Extended static checking for Java. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’02). 234–245.

Benny Godlin and Ofer Strichman. 2009. Regression verification. In Proceedings of the 46th Annual Design
Automation Conference (DAC’09). 466–471.

Benny Godlin and Ofer Strichman. 2013. Regression verification: Proving the equivalence of similar pro-
grams. Softw. Test. Verif. Reliab. 23, 3, 241–258.

Rajiv Gupta, Mary Jean Harrold, and Mary Lou Soffa. 1992. An approach to regression testing using slicing.
In Proceedings of the International Conference on Software Maintenance (ICSM’92). 299–308.

Dan Hao, Tian Lan, Hongyu Zhang, Chao Guo, and Lu Zhang. 2013. Is this a bug or an obsolete test? In
Proceedings of the 27th European Conference on Object-Oriented Programming (ECOOP’13). 602–628.

Chris Hawblitzel, Ming Kawaguchi, Shuvendu K. Lahiri, and Henrique Rebelo. 2013. Towards modularly
comparing programs using automated theorem provers. In Proceedings of the 24th International Confer-
ence on Automated Deduction (CADE’13). 282–299.

Daniel Jackson and David A. Ladd. 1994. Semantic Diff: A tool for summarizing the effects of modifications.
In Proceedings of the International Conference on Software Maintenance (ICSM’94). 243–252.

Wei Jin, Alessandro Orso, and Tao Xie. 2010. Automated behavioral regression testing. In Proceedings of the
3rd International Conference on Software Testing, Verification and Validation (ICST’10). 137–146.

Bogdan Korel and Ali M. Al-Yami. 1998. Automated regression test generation. In Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’98). 143–152.

Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebelo. 2012. SymDiff: A language-
agnostic semantic Diff tool for imperative programs. In Proceedings of the 24th International Conference
on Computer Aided Verification (CAV’12). 712–717.

Shuvendu K. Lahiri, Kenneth L. Mcmillan, Rahul Sharma, and Chris Hawblitzel. 2013. Differential assertion
checking. In Proceedings of the 9th Joint Meeting on Foundations of Software Engineering (ESEC/
FSE’13). 345–355.

Gary T. Leavens. 1991. Modular specification and verification of object-oriented programs. IEEE Softw. 8, 4,
72–80.

Bertrand Meyer. 1992. Applying “design by contract”. IEEE Comput. 25, 10, 40–51.
Bertrand Meyer. 1997. Object-Oriented Software Construction. 2nd Ed. Prentice-Hall.

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 3, Article 18, Pub. date: May 2015.



TOSEM2403-18 ACM-TRANSACTION April 27, 2015 20:39

Software Change Contracts 18:43

Leonardo De Moura. 2012. Answer for the question titled “quantifier vs non-quantifier”. http://stackoverflow.
com/questions/10011478/quantifier-vs-non-quantifier.

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the 14th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’08).
337–340.

Peter Muller. 2002. Modular Specification and Verification of Object-Oriented Programs. Lecture Notes in
Computer Science, vol. 2262, Springer.

Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-directed random testing for Java. In Compan-
ion to the 22nd ACM SIGPLAN Conference on Object-Oriented Programming Systems and Applications
(OOPSLA’07). 815–816.

David Lorge Parnas. 2011. Precise documentation: The key to better software. In The Future of Software
Engineering, Springer, 125–148.

Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina Pasareanu. 2008. Differential symbolic
execution. In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (FSE’08). 226–237.

Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil Vaswani. 2009. DARWIN: An approach for de-
bugging evolving programs. In Proceedings of the 7th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’09). 33–42.

Dawei Qi, Jooyong Yi, and Abhik Roychoudhury. 2012. Software change contracts. In Proceedings of the
20th ACM SIGSOFT International Symposium on the Foundations of Software Engineering (FSE’12).
22:1–22:4.

Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 2001. Prioritizing test cases
for regression testing. IEEE Trans. Softw. Engin. 27, 10, 929–948.

Alexandru Salcianu and Martin Rinard. 2005. Purity and side effect analysis for Java programs. In Pro-
ceedings of the 6th International Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI’05). 199–215.

Jooyong Yi, Dawei Qi, Shin Hwei Tan, and Abhik Roychoudhury. 2013. Expressing and checking intended
changes via software change contracts. In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA’13). 1–11.

Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why? In Proceedings of the 7th

European Software Engineering Conference held jointly with the 7th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (ESEC/FSE’99). 253–267.

Received June 2014; revised November 2014; accepted January 2015

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 3, Article 18, Pub. date: May 2015.


