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To date, the users of test-driven program repair tools suffer from the overfitting problem; a generated patch
may pass all available tests without being correct. In the existing work, users are treated as merely passive
consumers of the tests. However, what if they are willing to modify the test to better assess the patches obtained
from a repair tool? In this work, we propose a novel semi-automatic patch-classification methodology named
Poracle. Our key contributions are three-fold. First, we design a novel lightweight specification method that
reuses the existing test. Specifically, the users extend the existing failing test with a preservation condition—the
condition under which the patched and pre-patched versions should produce the same output. Second, we
develop a fuzzer that performs differential fuzzing with a test containing a preservation condition. Once we
find an input that satisfies a specified preservation condition but produces different outputs between the
patched and pre-patched versions, we classify the patch as incorrect with high confidence. We show that
our approach is more effective than the four state-of-the-art patch classification approaches. Lastly, we show
through a user study that the users find our semi-automatic patch assessment method more effective and
preferable than the manual assessment.

CCS Concepts: • Software and its engineering→ Software testing and debugging; Automatic pro-
gramming.

Additional Key Words and Phrases: Automated Program Repair, Overfitting Problem, Patch Validation, Patch
Classification, Preservation Condition

1 INTRODUCTION

Automated program repair (APR) techniques [18, 24, 26, 32, 33] have been developed extensively
over the last decade. In particular, the generate-and-validate (G&V) approaches have gained wide
popularity. A patch candidate 𝑃𝑐 generated in the first step is validated in the second step (see
Figure 1), typically with a user-given test suite. If 𝑃𝑐 passes all tests, many APR systems stop the
repair process and show 𝑃𝑐 to the user. However, there is no guarantee that 𝑃𝑐 is a correct patch; 𝑃𝑐
may merely pass all tests without being correct, which is often regarded as a plausible but incorrect
patch. This problem is called an overfitting problem in the APR literature [36, 46, 51, 60].1
To overcome the overfitting problem, many recent APR systems generate a list of plausible

(i.e., test-suite-passing) patches (instead of a single patch) so that a correct patch existing in
the patch space is not missed out [4, 11, 12, 22, 53, 54]. In this case, the users should manually

look through a list of plausible patches to find the correct one. Because a test suite is only an
under-constrained specification, hundreds and sometimes even thousands of plausible patches are
generated [4, 11, 12, 29, 53], and the manual assessment step can take a long time. While patches

∗Corresponding author.
1Although the term “overfitting” was originated from machine learning vocabulary, an APR system usually does not use
held-out tests. Typically, all available tests are provided to an APR system. In the APR literature, an overrating patch is often
used as a synonym of an incorrect patch.
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Fig. 1. Three steps used in recent generate-and-validate (G&V) APR tools generating a list of

plausible patches, among which the developer shouldmanually look for a correct patch.

can be reviewed2 in the order of their rankings [4, 53], ranking algorithms are often imprecise, and
a correct patch is not necessarily ranked high.

Existing work. Recently, several patch classification (PC) techniques [11, 49, 56, 59, 60] have
been suggested to filter out plausible yet incorrect patches, as listed in the first column of Table 1
in Section 2. These PC techniques can be broadly classified into score-based approaches [49, 56, 60]
and evidence-based approaches [11, 59]. The former approaches compute a score of a patch based
on various information such as distributed representations of patches [49] and path spectra of
patched and pre-patched (i.e., buggy) versions [56]. The computed score of a patch is compared
with a chosen threshold to make a classification decision. Meanwhile, the latter approaches use
differential testing [38, 41, 43] to detect behavioral differences between pre-patched and patched
versions [11, 59]. If the output of the pre-patched version is correct, the observed behavioral
difference indicates a regression error. Since an incorrect patch is rejected only with concrete
evidence of a regression error, perfect precision can be achieved (i.e., a patch classified as incorrect
is indeed incorrect), provided that the discovered behavioral difference correctly identifies an error.
This is the clear advantage of the evidence-based approach over the score-based approach.

Please note that we define true positive (𝑇𝑃 ), false positive (𝐹𝑃 ), true negative (𝑇𝑁 ), and false
negative (𝐹𝑁 ) as follows, considering the context of patch classification. 𝑇𝑃 refers to an incorrect
patch being correctly classified as incorrect, while 𝐹𝑃 refers to a correct patch being errorneously
classified as incorrect. On the other hand, 𝑇𝑁 and 𝐹𝑁 refer to a correct patch being correctly
classified as correct and an incorrect patch being incorrectly classified as correct, respectively.
Recall (𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 )) in our context measures how often incorrect patches are successfully
filtered out, while precision (𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)) measures how often a filtered-out patch is indeed
incorrect. These definitions of recall and precision are consistent with previous work on patch
classification [49, 51, 56, 60].

Both types of PC techniques have their limitations. For score-based approaches, it is difficult to
choose a threshold that makes recall high (i.e., incorrect patches should be filtered out as much as
possible) while keeping precision close to 100% (i.e., correct patches should not be filtered out) [1].
Meanwhile, evidence-based approaches suffer from low recall. This is because it is difficult to
determine whether a detected output difference between pre-patched and patched versions is
indicative of a regression error, without knowing whether that difference is intended or not, and
to avoid this issue, existing approaches [11, 45, 59] filter out only patches that result in program
crashes.3 As will be shown in this paper, we overcome this limitation by leveraging a lightweight
specification methodology.

2We use “review" and “assess" in an interchangeable way.
3Vulnerabilities detected by sanitizers such as UBSan and ASan and violation of in-code assertions are considered crashes as
well.
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Our viewpoint. The overfitting problem of APR occurs because a failing test used by an APR
system expresses only very limited information about change intention. While passing tests can
reveal additional user intention, those tests are prepared without considering a bug at hand. This
results in a situation where the user of an APR system should rely on luck to obtain the correct
patch. There is no wonder why APR systems suffer from the overfitting problem!
In this work, we pose the following question: what if the users are willing to express the bug-

fixing intention to better assess the obtained patches? With that question in mind, we suggest a
semi-automatic patch-classification methodology named Poracle that combines the evidence-based
PC technique with a lightweight specification methodology. With Poracle, the user can specify the
following kind of an assertion in a test.

∀𝑥 : whenever 𝜑 ( ®𝑥) is satisfied, 𝑝 ( ®𝑥) = 𝑝′ ( ®𝑥) (1)

where 𝑝 and 𝑝′ refer to a buggy version and its patched version, respectively, and ®𝑥 represents
the input to 𝑝 and 𝑝′, including global context such as timezone. We assume that 𝑝 and 𝑝′ are
deterministic on ®𝑥 and do not consider flaky tests in this work, as commonly assumed in previous
work on APR. Meanwhile, 𝜑 refers to our novel preservation condition — the condition under which
program behavior should be preserved between 𝑝 and 𝑝′. Once the user specifies a preservation
condition, Poracle performs differential fuzzing to search for a value 𝑣 violating condition (1); then
𝑣 is used as evidence to classify 𝑝′ incorrect.

Comparison with formal specification. Incorrect patches generated from APR tools can
also be filtered out using formal specifications, as shown by Nilizadeh et al. [37]; patches that
violate the specification are considered incorrect. However, writing precise formal specifications is
very challenging, as shown by Legunsen et al. [25]. According to their study, the developers often
write imprecise specifications, which results in a large number of false alarms. To write a precise
specification, the developers need to consider all possible cases, and should come up with a precise
oracle for each case. In contrast, writing a preservation condition is much simpler since it only
requires considering a specific context in which the bug appears.

Contributions. The main contributions of this work are:

• A novel patch classification methodology: We propose a novel semi-automatic patch
classification methodology by combining an evidence-based technique and a lightweight
specification method with which a preservation condition can be specified. Please note that
our method is not intended to replace the existing automatic patch classification techniques.
Instead, we provide the developers who prefer to have control over the patch classification
process with a concept (i.e., preservation condition) and tools they can use (i.e., APIs to
express preservation conditions and a differential fuzzer).
• Empirical findings: We run Poracle over the 458 patches in our dataset after adding
preservation conditions. Compared with four state-of-the-art PC techniques [49, 56, 59, 60],
our approach substantially outperforms three of them [49, 56, 59] both in recall and precision.
While ODS [60] shows better recall than Poracle, ODS shows the lowest precision among all
tools, implying that ODS errorneously rejects correct patches most frequently. Considering
the scarcity of correct patches [29] and the objective of program repair (i.e., finding a correct
patch), rejecting a correct patch is the last thing we want. In contrast, Poracle shows 99%
precision. Our experimental results show that many incorrect patches an APR tool generates
can be filtered out only with a snippet of information provided through a preservation condition

(note that a preservation condition only specifies what should be preserved but does not
specify what changes should be made).
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Table 1. Comparison between patch classification (PC) techniques

PC Technique
Filtering No Requires Detectable Allows
Criterion False Positive Threshold Tuning Error Type User Spec

Anti-patterns [47] Anti-patterns ✗ ✗ Anti-patterns ✗

PATCH-SIM [56] Score ✗ ✓ General ✗

Tian et al. [49] Score ✗ ✓ General ✗

ODS [60] Score ✗ ✓ General ✗

Opad [59] Evidence ✓∗ ✗ Crash ✗

Fix2Fit [11] Evidence ✓∗ ✗ Crash ✗

Ours Evidence ✓† ✗ General ✓

∗: Under the assumption that the observed crash of the patched version indicates a regression error.
†: Under the assumption that the user-provided preservation condition is either precise or under-approximate (see
Section 5.2.1).

• Reduction in manual patch-review effort: Our work is motivated by the high cost of
assessing a large number of plausible patches. By filtering out incorrect patches, the user only
needs to review the remaining ones. To evaluate this usage scenario, we apply our approach
to ranked lists of plausible patches generated from a state-of-the-art APR tool, JAID [4]. Our
experimental results show that the number of patches to review significantly decreases after
using our approach (on average, 108 patches/version), while all correct patches are retained.
Note that a single generalized test is used to validate all plausible patches in a ranked list.
• User study: The result of our user study conducted with 66 participants shows that the users
find the correct patch more often when Poracle is provided than when manually finding
the correct one. Most participants of our user study preferred the semi-automatic patch
assessment using Poracle to the manual assessment.
• Replication package: We provide a replication package in the following URL:

https://github.com/UNIST-LOFT/poracle.

Our package contains all generalized tests covering 458 patches and our custom fuzzer
supporting our novel preservation conditions.

2 BACKGROUND AND RELATEDWORK

2.1 Automated Program Repair (APR)

The goal of automated program repair (APR) is to automatically generate a patch that fixes a given
bug. Over the past decade, diverse APR techniques have been developed. Some techniques [12, 24]
randomly mutate the given buggy program under the guidance of a test suite 𝑇𝑆 with an aim to
obtain a mutated program that passes all tests in 𝑇𝑆 . Other techniques [20, 26] use predefined
templates to generate patches instead of randommutations. More recent techniques [18, 54] employ
machine-learned models to generate patches. Meanwhile, semantics-based approaches [32, 33] first
infer constraints to fix the bug and then generate a patch that satisfies the constraints.

The current challenges of APR include (1) how to fix more diverse bugs [44], (2) how to generate
patches fast [22, 62], and (3) how to generate correct patches. This work focuses on the third issue.
Most current APR techniques cannot guarantee the correctness of generated patches due to the
overfitting problem described below.
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2.2 Overfitting Problem

One of the major challenges in APR is the overfitting problem [46] that occurs because many
incorrect patches exist in the patch space; they are often not filtered out by a given test suite [29, 46].
To address this problem, many APR systems use one of the three techniques: (1) patch ranking
algorithms, (2) score-based patch classification, and (3) evidence-based patch classification.

The idea of patch ranking is to identify patches that are more likely to be correct and place them
at higher rankings than the others. For example, Prophet [28] ranks patch candidates based on a
probabilistic model learned from existing patches. Other APR tools, such as ACS [57], CapGen [52],
SimFix [16], and JAID [4] similarly perform patch ranking.
However, the ranking algorithms are often imprecise, and it is common that a correct patch is

not ranked first. As the patch space increases, this problem tends to be exacerbated, and correct
patches are often missed out [29]. Thus, many recent studies propose improved patch classification
(PC) techniques [11, 47, 49, 51, 56, 59, 60]. The goal of the PC technique is to filter out incorrect
patches while keeping correct patches.

Score-based PC techniques perform patch classification by computing the scores of the patches.
In anti-patterns (common patterns of incorrect patches) [47], a simple binary scoring scheme is
used; patches belonging to anti-patterns receive a low score and are rejected. Otherwise, patches
are accepted. A more recent technique, PATCH-SIM [56] computes the path similarity between
the execution paths before and after the patch. Various machine-learning-based classification
techniques have also been developed, using hand-crafted features [60] or embedding techniques
(e.g., [49] and BATS [48]). These techniques compare the computed scores with a threshold to
perform classification, and the threshold is typically chosen empirically (e.g., using training data).
In general, it is difficult to choose a threshold that makes recall high while keeping precision close
to 100% [1]. Also, these approaches do not provide a semantic explanation for the classification
decision.
Evidence-based approaches [11, 59] do not have the limitations of the score-based approaches

since a patch is rejected only with concrete evidence of the error. Opad [59] uses a fuzzer to detect
crashing patches. Fix2Fit [11] similarly uses a fuzzer to avoid generating crashing patches. However,
since only crashing patches are detected, the recall of the existing evidence-based approaches is
low.

Table 1 summarizes the existing PC techniques. Our technique inherits the advantage of evidence-
based techniques — i.e., when an incorrect patch is filtered out, clear evidence for the rejection is
provided to the user — and at the same time, lifts the limitation of the existing evidence-based tech-
niques — i.e., low recall due to the fact that only crashing patches can be detected. By allowing the
user to specify his or her intention for the patch, our method can also detect non-crashing incorrect
patches, which leads to high recall, as will be shown with experiments. In the PC classification
research, the main goal has been to achieve high recall without dismissing a correct patch [51]. In
this work, we show that this goal can be achieved by taking only a snippet of information from the
user.

2.3 Program Contracts

In the recent work of Nilizadeh et al. [37], program contracts are used to verify the correctness of
APR-generated patches using formal verification techniques. Program contracts were also used to
express and verify the user’s change intention [13, 23, 63, 64]. Compared with these more formal
approaches, our lightweight approach does not require a separate contract, and our preservation
condition is directly added into an existing failing test, the input of most APR tools.
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1 double ret;
2 double d = getDenominatorDegreesOfFreedom();
3 - ret = d / (d − 2.0);
4 + ret = d / (d + 2.0);

(a) An incorrect patch for Math95

1 - double ret;
2 + double ret = 1.0;
3 double d = getDenominatorDegreesOfFreedom();
4 + if (d > 2.0) {
5 ret = d / (d − 2.0);
6 + }

(b) A correct patch for Math95

1 public void testSmallDegreesOfFreedom() {
2 FDistributionImpl fd =
3 new FDistributionImpl(1.0, 1.0);
4 double p = fd.cumulativeProbability(0.975);
5 double x = fd.inverseCumulativeProbability(p);
6 assertEquals(/∗ expected output ∗/ 0.975, x,
7 /∗ delta ∗/ 1.0e−5);
8 }

(c) Developer-written failing test for Math95

1 public void testSmallDegreesOfFreedom(double d1,
2 double d2, double d3) {
3 FDistributionImpl fd =
4 new FDistributionImpl(d1, d2);
5 double p = fd.cumulativeProbability(d3);
6 double x = fd.inverseCumulativeProbability(p);
7 // Which expression should be used in the following blank
8 // to express the correct output for a given random input?
9 assertEquals(/∗ expected output ∗/ ______, x,
10 /∗ delta ∗/ 1.0e−5);
11 }

(d) An incomplete parameterized test of (c)

Fig. 2. Motivating example

2.4 Patch Evaluation

Apart from patch classification (PC) techniques, there are also patch evaluation (PE) techniques [55,
58, 61, 65] where patch correctness is evaluated based on correct versions in the benchmark. Unlike
these patch evaluation techniques, PC techniques like ours classify the correctness of a patch
without consulting correct versions.

3 A MOTIVATING EXAMPLE

Consider a scenario where an APR tool returns a list of plausible patches, and the user finds a correct
patch among them. Suppose that the list contains many incorrect patches, including the one shown
in Figure 2(a) and a correct patch shown in Figure 2(b), all of which pass all available tests. Note
that the size of the list is often large. For example, JAID [4] generates 1263 patches4 for the example
buggy version (Math95 in the Defects4J benchmark [19]). To expedite the patch review process,
the user may want to first filter out incorrect patches using a patch classification (PC) technique
before reviewing the remaining patches. If she uses PATCH-SIM [56], one of the state-of-the-art PC
tools, the example incorrect patch is failed to be filtered out. In fact, all (14) incorrect patches for
the same buggy version available in our dataset are failed to be filtered out by PATCH-SIM. Being
disappointed, she may try out a recent ML-based PC tool, ODS [60]. Unfortunately, she only finds
that ODS is even more disappointing since it filters out the correct patch!

This example illustrates the challenge of patch classification. The users would want to filter out
incorrect patches as much as possible, but the last thing they would want is to discard correct
patches, which are only scarcely available. Both PATCH-SIM [56] and ODS [60] use score-based
approaches, making it challenging to distinguish between incorrect and correct patches without
discarding the latter. They compute a score for a given patch and make a classification decision by
comparing the obtained score with a chosen threshold. If a threshold is chosen conservatively as in

4https://bitbucket.org/maxpei/jaid/wiki/Home

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2023.

https://bitbucket.org/maxpei/jaid/wiki/Home


Poracle: Testing Patches Under Preservation Conditions to Combat the Overfitting Problem of Program Repair 7

Fig. 3. Our semi-automatic approach filtering out incorrect patches

PATCH-SIM, many incorrect patches are not filtered out. Meanwhile, if a threshold is determined
more aggressively as in ODS, many correct patches are also filtered out (see Section 6.2.1).
In this work, we use an evidence-based approach which does not suffer from the threshold

problem; we reject a patch only when concrete evidence for rejection is found via fuzzing, thus
guaranteeing high precision. Note that existing evidence-based approaches [11, 59] rely only on
program crashes as concrete evidence. However, using only implicit oracles is not enough, and the
current evidence-based approaches suffer from low recall [51].
To provide more help to developers, we generalize the evidence-based approach by looking

for any kind of output discrepancies between patched and pre-patched versions. To look for a
discrepancy, we start by generalizing a given failing test. Figure 2(c) shows the failing test for our
example buggy version, and Figure 2(d) shows how we generalize the three constants of the existing
test into three parameters d1, d2, and d3. Then, using a QuickCheck framework [7] such as junit-
quickcheck [14], we can obtain various random values for these parameters to perform differential
fuzzing. One remaining problem is that not all output discrepancies evidence the incorrectness of
the patch since certain output changes are expected with the patch. To resolve this problem, the
oracle also needs to be generalized. In an attempt to generalize the original assertion, 0.975-1.0e-5
<= x <= 0.975+1.0e-5 (line 6–7 of Figure 2(c)), the user can consult the API document of the method
under test, inverseCumulativeProbability, which specifies the following [10]:

• inf{x in R | P(X <= x) >= p} for 0 < p <= 1
• inf{x in R | P(X <= x) > 0} for p = 0

where inf, R and p represent infimum, a set of real numbers, and the parameter to the inverseCumula-
tiveProbability method, respectively. Unfortunately, this mathematical specification is not executable
and cannot be used directly as an oracle.
In this paper, we propose an alternative way to specify the user’s intention when validating

patches. In the next section, we describe our semi-automatic patch validation methodology named
Poracle.
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4 OUR APPROACH: PORACLE

Figure 3 illustrates our approach named Poracle. We consider a scenario where an APR tool
generates multiple plausible patches for a given buggy program, and the developer needs to review
those patches to find out the correct one. For each patch 𝛿𝑘 , we take the following steps to decide
whether to show it to the developer for review.

(1) We generate an input 𝐼 using our differential fuzzer described in Section 4.4.
(2) We run the buggy program 𝑃 with 𝐼 to produce an output 𝑂 .
(3) We check whether 𝐼 and 𝑂 satisfy the developer-specified preservation condition 𝜑 . If so, we

run the patched program 𝑃𝑘 with 𝐼 to produce an output 𝑂 ′. Otherwise, we go back to step 1.
(4) We check whether 𝑂 and 𝑂 ′ are different. If so, we filter out the patch 𝛿𝑘 . Otherwise, we go

back to step 1.
(5) We repeat steps 1–5 until either 𝛿𝑘 is filtered out or a timeout occurs, in which case we show

𝛿𝑘 to the developer for review.
In this section, we describe our approach in detail. We describe the concept of a preservation

condition in Section 4.1 and subsequently show in Section 4.2 how preservation conditions can
be expressed in existing tests. We provide examples of preservation conditions in Section 4.3.
Section 4.4 describes our differential fuzzer. Lastly, in Section 5, we discuss various factors that can
affect the effectiveness of our approach.

4.1 Generalizing a Failing Test with a Preservation Condition

Given a failing test an APR tool used to generate patches (e.g., Figure 2(c)), our specification
methodology takes the following two steps.

Step 1) Parameterizing a failing test. To generalize the input of the existing test, we parameterize
the original test (constant values appearing in the test code are parameterized) as shown in Fig-
ure 2(d). An obtained parameterized test can be perceived as a parameterized unit test (PUT) [50]
or a property-based test (PBT) [7, 14].

Step 2) Generalizing an oracle. Given a parameterized test 𝑇 ( ®𝑥) where ®𝑥 represents parameters,
we need an oracle that can tell whether 𝑇 ( ®𝑥) returns a correct output when test 𝑇 is executed over
a patched version with an arbitrary input. A conventional method is to write a formal specification
as shown in [37]. In such a approach, an oracle function𝜓 ( ®𝑥) satisfying the following is specified
by the user.

∀®𝑣 : 𝑇 (®𝑣) = 𝜓 (®𝑣) (2)
where 𝑇 (®𝑣) represents the output of test 𝑇 when inputs ®𝑣 is assigned to parameters ®𝑥 . However, as
described with the motivating example, writing such𝜓 is not trivial even if a developer has a perfect
understanding of the program under testing. Alternatively, the user may describe a metamorphic
relation (such as 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑥)) = 𝑥 ). However, it is usually not easy to find a metamorphic
relation effective at bug finding [6, 31].

Generalizing an oracle with a preservation condition. Instead of specifying𝜓 , we suggest
an alternative specification construct 𝜑 we call a preservation condition. Given a parameterized test
𝑇 ( ®𝑥) applied to a buggy program 𝑃 and a correctly patched program 𝑃 ′, preservation condition 𝜑

should satisfy the following:
∀®𝑣 : 𝜑 (®𝑣) ⇒ 𝑇𝑃 (®𝑣) = 𝑇𝑃 ′ (®𝑣) (3)

where 𝑇𝑃 (®𝑣) and 𝑇𝑃 ′ (®𝑣) represent the output of test 𝑇 in 𝑃 and 𝑃 ′, respectively, when inputs ®𝑣 is
assigned to parameters ®𝑥 . Here the intention is that for any input ®𝑣 satisfying 𝜑 in the pre-patched

version 𝑃 , the output should be preserved in the patched version 𝑃 ′. Conversely, if output difference is
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1 public void testGcd(int i, int j) {
2 boolean preservationCondition =
3 !( (i==Integer.MIN_VALUE && j==0) || (i==0 && j==Integer.MIN_VALUE) );
4 preserveIf(preservationCondition, () −> new Long[] { MathUtils.gcd(i, j) });
5 }

Fig. 4. An example of a preservation condition

observed for input ®𝑣 satisfying 𝜑 in 𝑃 , ®𝑣 is evidence for the incorrectness of 𝑃 ′. We call formula (3)
a preservation invariant.

4.2 Expressing a Preservation Condition in a Test

To see how we express a preservation condition in a test, consider an example of Figure 4 where
a bug occurs because method gcd fails to handle a corner case input correctly; when gcd takes as
input a pair of Integer.MIN_VALUE and 0, the buggy version returns a wrong value. In this case,
developers would want to test whether program behavior is preserved in the non-corner cases
(i.e., input is not a pair of Integer.MIN_VALUE and 0), and this preservation condition is expressed in
line 4 of our example.

As described in formula (3), we run our example test with both pre-patched and patched versions
when the preservation condition holds. To compare the output values of the two versions, we
use our custom method preserveIf, as shown in line 4. If the first parameter holds true, the second
parameter is evaluated in both versions, and their values are compared with each other. If different
values are observed, the patch under consideration is classified as incorrect. We use a lambda
expression (i.e., () -> . . .) in the second parameter of the preserveIf method for a technical reason.5
We formally define the semantics of preserveIf as follows, where 𝑃 and 𝑃 ′ represent the pre-

patched and patched versions, respectively. Note that we run the pre-patched version before running
the patched version.

𝑃 ′ ⊢ preserveIf(𝜑, _) =
{
𝑃 ′ ⊢ Assert(eval(_) == 𝑣) if 𝑃 ⊢ eval(𝜑) == 𝑡𝑟𝑢𝑒 , 𝑃 ⊢ eval(_) == 𝑣

𝑃 ′ ⊢ nop otherwise
(4)

where notation 𝑃 ′ ⊢ preserveIf(𝜑, _) denotes that preserveIf(𝜑, _) is executed under the patched
version 𝑃 ′. Similarly, notation 𝑃 ⊢ eval(𝜑) = 𝑡𝑟𝑢𝑒 denotes that preservation condition 𝜑 is evaluated
to 𝑡𝑟𝑢𝑒 under the original version 𝑃 . Notation 𝑃 ⊢ eval(_) == 𝑣 is interpreted similarly.
If random input assigned to the parameters (i.e., i and j in the running example) satisfies the

preservation condition in the original (pre-patched) version, we also run the same test with the
patched version to compare the output between the versions. Otherwise, we skip running the
patched version with the current random input (since 𝑃 ′ ⊢ nop, there is no need to run the patched
version).

4.3 Examples of Preservation Conditions

In this section, we show four examples of preservation conditions. These examples exhibit four
different patterns of preservation conditions that cover all buggy versions in our dataset. As
detailed in Section 6.1, we write preservation conditions to cover all 77 real-world bugs in our

5If an output value is obtained by calling a method (e.g., the method under test returns a reference type value 𝑣 and to obtain
an output, 𝑣.toString() is used), an exception can be raised while calling that method. To ignore such a case, we pass a
lambda expression to the preserveIf method.
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Table 2. Distribution of preservation condition patterns

Project UE CC EGA RI
Chart 8 4 1 0
Lang 0 2 4 6
Math 18 14 7 6
Time 3 0 4 0
Total 29 20 16 12

1 public void testSmallDegreesOfFreedom(double d1, double d2, double d3) {
2 try {
3 FDistributionImpl fd = new FDistributionImpl(d1, d2);
4 double p = fd.cumulativeProbability(d3);
5 double x = fd.inverseCumulativeProbability(p);
6 preserveIf(/∗ preservation condition ∗/true, /∗ outputs to compare ∗/ () −> new Double[] {x});
7 } catch (Exception e) {
8 // If an exception occurs only in the patched version, the patch is classified as incorrect.
9 failToPreserve();
10 }
11 }

Fig. 5. Generalized test for Math95 (UE)

dataset. We obtain these 77 buggy versions from the previous work on patch classification [56].
Table 2 shows the distribution of the four patterns over the 77 buggy versions.

The distribution of the four patterns is shown in Table 2 and we present the examples in the
order of the coverage of each pattern.

4.3.1 Unexpected Exception (UE). The test shown in our motivating example–Figure 2(c)–fails
because an exception is thrown when it is not expected. In this case, the developer would want to
preserve the program behavior as long as the original version does not throw an exception. Figure 5
shows how we generalize the test. The preserveIf method at line 6 is called only when an exception
is not thrown before reaching that line. Thus, the preservation condition is simply true in this case.

What if an exception occurs only in the patched version? In this example, it would be reasonable
to classify the patch as incorrect in that case. To do that, we use another custommethod failToPreserve
at line 9 whose semantics is defined as follows, where𝑚𝑠𝑔 refers to a predefined unique message:

𝑃 ⊢ failToPreserve() =
{
𝑃 ⊢ preserveIf(true,𝑚𝑠𝑔) if 𝑃 is a patched version
𝑃 ⊢ nop if 𝑃 is a pre-patched version

If an exception occurs only at the patched version, the output of the patched version is𝑚𝑠𝑔,
whereas the output of the pre-patched version is the value of x obtained at line 6. Thus, the
discrepancy in the output is detected as desired.
Comparison with the existing approaches. The existing approaches such as Opad [59]

and Fix2Fit [11] detect crashing patches which can be viewed as the UE pattern. However, these
existing approaches cannot detect unexpected non-crashing differences between the versions. In
comparison, the test shown in Figure 5 can be used to detect such unexpected non-crashing
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1 public void testGcd(int i, int j) {
2 /∗ Original body:
3 try {
4 MathUtils.gcd(Integer.MIN_VALUE, 0);
5 fail("expecting ArithmeticException");
6 } catch (ArithmeticException expected) { // expected }
7 ∗/
8 // Generalized body:
9 try {
10 boolean complement = !( (i==Integer.MIN_VALUE && j==0) || (i==0 && j==Integer.MIN_VALUE) );
11 final long actual = MathUtils.gcd(i, j);
12 preserveIf(complement, () −> new Long[] { actual });
13 } catch (ArithmeticException e) {
14 preserveIf(!complement, () −> new String[] { e.toString() });
15 } catch (Exception e) {
16 failToPreserve();
17 }
18 }

Fig. 6. Generalized test for Math99 (CC)

differences. For example, if method inverseCumulativeProbability behaves differently between pre-
patched and patched versions, the outputs of the two versions are compared to each other by calling
the preserveIf method.
By using the generalized test shown in Figure 5, we succeed to reject all 15 incorrect patches

available in our benchmark while accepting the correct patch (Figure 2(b)).

4.3.2 Complementary Cases (CC). A software fault often occurs when corner-case behavior is
not yet implemented. Consider Figure 6 whose simplified version was shown earlier in Figure 4.
In this example, the bug occurs because method gcd fails to handle a corner case input correctly;
when gcd takes as input a pair of Integer.MIN_VALUE and 0, an ArithmeticException is expected to be
thrown (see line 5), but the buggy version fails to do so. In this case, developers would want to test
whether program behavior is preserved in the complementary cases where input is not a pair of
Integer.MIN_VALUE and 0. The generalized test shown in Figure 6 can detect an incorrect patch that
returns an incorrect output (line 12). It can also detect incorrect patches that either fail to throw an
expected ArithmeticException (line 14) or throw an unexpected exception (line 16).

4.3.3 Existing General Assertion (EGA). A certain assertion existing in the test can be repurposed
as a preservation condition. For example, consider Figure 7 where the original test uses an assertion
condition, ret >= 0.0 (line 10). Note that this assertion should be satisfied for all input values (i.e.,
d1, d2, . . ., d6) as long as no exceptions are thrown. Many tests, if not all, contain such general
assertions that should be satisfied for all inputs. In such cases, the assertion can be reused as a
preservation condition.
Note that reusing the existing condition as a preservation condition does not mean that oracle

power stays the same. Note that incorrect patches assigning wrong positive values to variable ret
still satisfy ret >= 0.0. Those incorrect patches cannot be rejected if ret >= 0.0 is solely used as
an oracle. Only after using ret >= 0.0 as a preservation condition, the oracle power is elevated;
the aforementioned incorrect patches can be detected since outputs will differ between the two
versions.
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1 public void testSSENonNegative(double d1, double d2, double d3, double d4, double d5, double d6) {
2 try {
3 double[] y = { d1, d2, d3 };
4 double[] x = { d4, d5, d6 };
5 SimpleRegression reg = new SimpleRegression();
6 for (int i = 0; i < x.length; i++) {
7 reg.addData(x[i], y[i]);
8 }
9 double ret = reg.getSumSquaredErrors();
10 // Original: assertTrue(ret >= 0.0);
11 preserveIf(ret >= 0.0, () −> new Double[] { ret });
12 } catch (Exception e) {
13 failToPreserve();
14 }
15 }

Fig. 7. Generalized test for Math105 (EGA)

1 public void testLang300(int n, int m) {
2 // NumberUtils.createNumber("1l"); // Original body
3 // Test with a generalized input
4 String s = "" + ((char) n) + ((char) m) + "l";
5 String actOut = "";
6 try {
7 actOut = "" + NumberUtils.createNumber(s).longValue();
8 } catch (Exception e) {
9 actOut = "Exception";
10 }
11 // Use Long.valueOf as a reference
12 String refOut = "";
13 try {
14 refOut = "" + Long.valueOf(s);
15 } catch (Exception e) {
16 refOut = "Exception";
17 }
18 preserveIf(actOut.equals(refOut), () −> new String[] { actOut });
19 }

Fig. 8. Generalized test for Lang58 (RI)

4.3.4 Reference Implementation (RI). It is known that developers often write redundant implemen-
tations [2, 3, 17]. Consider Figure 8 where the createNumber method is tested. The functionality of
this method is the same as the Long.valueOf method when the input string to createNumber ends with
“l”. The preservation condition, actOut.equals(refOut), expresses the intention that behavior should
be preserved after the patch if the method under test returns the same output as the reference
implementation in the pre-patched version.
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Algorithm 1 The Poracle fuzzing algorithm
Input: a buggy version 𝑝 and its patched version 𝑝′

Input: a parameterized test with a preservation condition 𝜑

Output: witness value ®𝑣 that makes the patched version violate the specified preservation invariant
1: ®𝑣 ← ⊥
2: 𝑆 ← ∅ ⊲ a set of interesting input
3: 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑣 ← ∅ ⊲ total coverage
4: 𝑟𝑎𝑛𝑔𝑒𝐹𝑖𝑥𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒;𝑛𝑜𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 ← 0
5: repeat
6: if 𝑆 = ∅ then
7: if 𝑛𝑜𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 >= 𝑇 then
8: widenRange( ); 𝑛𝑜𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 ← 0
9: end if
10: 𝑠 ← 𝑟 ⊲ 𝑟 : a random value within in the range
11: else
12: 𝑠 ← ChooseNext(𝑆)
13: end if
14: for 𝑖 from 1 to Energy(𝑠) do
15: 𝑠† ← Mutate(𝑠, 𝑆)
16: // Run the original version 𝑝

⊲ 𝑜 : outputs, 𝑐𝑜𝑣 : coverage, 𝜎 : program states
17: 𝑜, 𝑐𝑜𝑣, 𝜎 ← Run(𝑝, 𝑠†)
18: if 𝜑 (𝑠†, 𝑜) then
19: // Preservation condition 𝜑 is satisfied
20: 𝑛𝑜𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 ← 0
21: // Run the patched version 𝑝′

⊲ 𝜎′: dumped program state
22: 𝑜′, 𝑐𝑜𝑣 ′, 𝜎′ ← Run(𝑝′, 𝑠†)
23: if 𝑜 ≠ 𝑜′ then
24: ®𝑣 ← 𝑠†

25: return ®𝑣 ⊲ return a found witness value
26: end if
27: else
28: // Preservation condition 𝜑 is not satisfied
29: 𝑛𝑜𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠++; 𝑐𝑜𝑣 ′ ← ⊥
30: end if
31: if ShouldSave(𝑐𝑜𝑣, 𝑐𝑜𝑣 ′, 𝑠†) then
32: 𝑆 ← 𝑆 ∪ {𝑠†}
33: end if
34: end for
35: until timeout reached

4.4 Differential Fuzzing

In this work, we advocate a semi-automated approach for patch validation. Once a preservation
condition is written, the next step – finding an input that makes the patched version violate the
specified preservation invariant – is automatically performed via differential fuzzing.
We design a fuzzer that takes as input a pair of pre-patched and patched versions and a gen-

eralized test. Specifically, we customize JQF [40], a coverage-guided fuzzer for Java, so that our
two specification APIs (preserveIf and failToPreserve) are supported. In addition, we add features for
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differential fuzzing to JQF as these features are not supported in the original JQF. Our differential
fuzzing tool can be obtained at https://github.com/PLaSE-UNIST/poracle-tool.

Algorithm 1 shows our fuzzing algorithm. The overall structure follows the standard coverage-
guided fuzzing. The algorithm maintains a set of interesting input 𝑆 . Set 𝑆 is initialized with
an empty set (line 2), and random inputs are used until 𝑆 becomes non-empty (line 10). If new
interesting input is found, the current input is added to 𝑆 (line 32). The meaning of Energy (line 14)
and ShouldSave (line 31) functions are explained in the later part of this section. In JQF, coverage is
a set of all coverage points (e.g., program branches) covered by the input. In our fuzzer, we extend
this concept and concatenate the coverage obtained from both pre-patched and patched versions.

While the overall structure of our fuzzer follows the standard coverage-guided fuzzing, we also
customize our fuzzer as described below.

4.4.1 Considering the Specified Preservation Condition. Unlike the conventional differential fuzzers,
our fuzzer does not have to always execute both pre-patched and patched versions. Instead, our
fuzzer runs a patched version only when a given preservation condition 𝜑 is satisfied in its pre-
patched version (lines 18–30). This is because if 𝜑 is not satisfied in the pre-patched version, the
given preservation invariant cannot be violated. Thus, when 𝜑 is not satisfied in the pre-patched
version, we directly generate the next input and run the pre-patched version.

When generating a random input, our fuzzer chooses a value in the range of [𝑐 −𝛿, 𝑐 +𝛿] where 𝑐
is a fixed constant and 𝛿 is chosen adaptively.6 In general, the fuzzing space grows as a larger range
is used, and as a result, fuzzing efficiency decreases. To balance the fuzzing space and efficiency,
our fuzzer gradually widens the range until an input satisfying a given preservation condition is
found. More specifically, we widen the range if the given preservation condition is not satisfied for
𝑇 consecutive times (line 8).7 In cases where a fixed range should be used for a certain parameter
(e.g., a parameter representing the week of a date), we allow developers to express that intention,
and adaptive widening is disabled.8

4.4.2 Considering the Program State Changes Between the Two Versions. To trigger an output
difference between the pre-patched and patched versions, it is necessary to propagate state changes
made in the patched location — we assume that a single program location is patched as done in
most current APR tools — toward the end of the execution path. To achieve this, our fuzzer exploits
not only code coverage but also the program state changes observed between the two versions.
More concretely, we add an input 𝑠† to a set of interesting input 𝑆 (i.e., ShouldSave returns true)
when one of the following two conditions is satisfied:
(C1) 𝑠† covers a new branch in either the pre-patched or patched version.
(C2) 𝑠† propagates the state changes made in the patched location further toward the end of the

execution path.
To check C2, we do the following. First, when the patched location is reached while executing
the patched version, we extract the stack trace, [𝑚1,𝑚2, . . . ,𝑚𝑘 ], where𝑚1 refers to the patched
method,𝑚2 is the caller of𝑚1, and𝑚𝑘 is the top-level method. Then, at each exit point of𝑚𝑖 , we
extract a program state 𝜎𝑖 and 𝜎 ′𝑖 from the buggy version and its patched version, respectively. We
define a program state as a set of mappings from a variable to its value. To confine the size of the
program state, we keep track of only the variables 𝑣 satisfying the following properties. Below, we
denote the receiver object of𝑚𝑖 as 𝑟 . We do not consider static methods.

6The value of 𝑐 can be obtained from the constant value used in the original failing test. For example, the value of parameter
d3 of Figure 2(d) is in the range [0.975 − 𝛿, 0.975 + 𝛿 ].

7We use 10 in our experiments.
8This feature is not shown in Algorithm 1 for the simplicity of presentation.
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• 𝑣 is reachable from 𝑟 or refers to the ghost variable holding the return value of𝑚𝑖 .
• The type of 𝑣 is either primitive or String.

We then compute the distance between 𝜎𝑖 and 𝜎 ′𝑖 as the summation of |𝑣−𝑣 ′ | for each variable 𝑣 in
𝜎𝑖 and its corresponding variable 𝑣 ′ in 𝜎 ′𝑖 . When 𝑣 has the String type, we compute the Levenshtein
distance between 𝑣 and 𝑣 ′.

Finally, given the stack trace [𝑚1,𝑚2, . . . ,𝑚𝑘 ], we compute a distance list [𝑑1, 𝑑2, . . . , 𝑑𝑘 ] where
𝑑𝑖 denotes the state distance between 𝜎𝑖 and 𝜎 ′𝑖 . Note that if 𝑑𝑖 is zero, 𝑑 𝑗 for 𝑗 > 𝑖 is also zero. We
consider that C2 is satisfied when one of the following conditions holds.
(1) 𝑑 𝑗 is positive for the first time — i.e., the state changes are propagated further than before.
(2) 𝑑 𝑗 is larger than its previous maximum value and 𝑑 𝑗+1 is zero in all cases so far including the

current case.
Among the saved inputs, our fuzzer prioritizes those that propagate state changes further. To

achieve this, we sort the saved inputs as follows:
• For input 𝑠 , let𝑚𝑎𝑥_𝑖𝑑𝑥 (𝑠) denote the maximum index 𝑗 such that 𝑑 𝑗 is positive. We place
an input 𝑠1 after 𝑠2 when𝑚𝑎𝑥_𝑖𝑑𝑥 (𝑠1) > 𝑚𝑎𝑥_𝑖𝑑𝑥 (𝑠2).
• If𝑚𝑎𝑥_𝑖𝑑𝑥 (𝑠1) = 𝑚𝑎𝑥_𝑖𝑑𝑥 (𝑠2), we break the tie as follows. Let𝑚𝑎𝑥_𝑖𝑑𝑠_𝑣𝑎𝑙 (𝑠) denote the
value of 𝑑 𝑗 where max _𝑖𝑑𝑥 (𝑠) = 𝑗 . We place an input 𝑠1 after 𝑠2 when𝑚𝑎𝑥_𝑖𝑑𝑥_𝑣𝑎𝑙 (𝑠1) >
𝑚𝑎𝑥_𝑖𝑑𝑥_𝑣𝑎𝑙 (𝑠2).

Once sorting is done, we assign energy to input 𝑠 (i.e., the number of iterations 𝑠 is mutated). In
Algorithm 1, the Energy function returns the energy assigned to 𝑠 . To mutate more promising input
— i.e., an input towards the end of the sorted input list — more frequently, we use the following
formula:𝑀𝑎𝑥𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑖+1

|𝑆 | where𝑀𝑎𝑥𝐸𝑛𝑒𝑟𝑔𝑦 refers to the maximum value Energy can return and
𝑖 is the index of 𝑠 in the sorted input list 𝑆 .

5 DISCUSSION

Our method is specifically designed for developers who desire greater control over the patch classification

process.We assume that the users of our approach have adequate domain-specific knowledge about
the target program and the patch. Please note that our method is not intended to replace existing
automatic patch classification (PC) techniques. Rather, it fills a gap the existing PC techniques
cannot cover. Even if developers wish to incorporate their domain-specific knowledge, the existing
PC techniques do not allow for this. Our approach provides developers with a language to express
their domain-specific knowledge (i.e., preservation condition) and a tool (i.e., a differential fuzzer)
to filter out incorrect patches based on this knowledge.
In this section, we discuss the benefits and limitations of our semi-automatic approach in

Section 5.1 and Section 5.2, respectively. Subsequently, we present in Section 5.3 a guideline to
write a preservation condition to minimize the limitation of our approach. In Section 5.4, we discuss
the possibility of further automating our approach. Finally, Section 5.5 compares our approach
with conventional test assertions.

5.1 Benefits of Our Approach

APR systems are expected to be integrated into a continuous integration (CI) system. Imagine that
one of the regression tests fails, and an APR tool generates a set of patches. In case it is clear how
to fix the detected bug, the developer would easily fix the bug without having to take a look at the
generated patches. APR and our patch validation approach can be handy in the opposite case. If
the developer is not sure about how to fix the bug and an APR tool generates multiple patches, the
developer would consider using our approach to obtain the following benefits. First, as shown in
this work, incorrect patches an APR tool generates can be filtered out. This can reduce the cognitive
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(a) Under-approximate 𝜑 (b) Over-approximate 𝜑 (c) Wrong 𝜑

Fig. 9. Imperfect preservation conditions

load of the developer since multiple incorrect patches can be filtered out by generalizing a failing
test with a preservation condition only once.

As the second benefit, the developer can have higher confidence in the obtained patch surviving
hundreds of tests instantiated from the prepared generalized test. In the current APR community, it
is generally assumed that the developer can easily determine the correctness of a patch an APR
system generates. However, recall that the fault localization research community initially made a
similar assumption — simply suggesting a faulty line candidate would be enough for the developer
to detect, understand, and fix the bug — but since the seminal paper of Parnin and Orso [42], this
assumption was abandoned in the community. We argue that the APR community should also
consider the possibility that simply suggesting a patch may not be sufficient for the developer to
decide the correctness of a patch. Indeed, earlier studies show that developers often make mistakes
when writing a patch [21, 34]. Our approach helps the developer identify incorrect patches.

Lastly, once a generalized test is written, it can be reused to test future code changes as long as
the preservation condition does not change. When a test fails in a CI system and as a follow-up,
an APR system generates multiple patches, only the patches that survive all available generalized
tests will be shown to the user.

While it takes some time for a user to extend the existing failing test into a generalized test, this
task can be done while an APR system is running in the CI system, given that it takes a long time for
an APR tool to generate a patch. The time spent preparing a generalized test can be compensated
in multiple ways as described.

5.2 Limitations of Our Approach

5.2.1 Impact of Imperfect Preservation Condition. As with any approach that involves human input,
the effectiveness of our approach depends on the quality of the input provided. There are the
following four different cases to consider:

(1) A user-written preservation condition 𝜑 is equivalent to the ground-truth preservation
condition𝜓 (i.e., 𝜑 = 𝜓 ).

(2) 𝜑 is an under-approximation of𝜓 (i.e., 𝜑 is stronger than𝜓 ).
(3) 𝜑 is an over-approximation of𝜓 (i.e., 𝜑 is weaker than𝜓 ).
(4) 𝜑 is wrong (i.e., neither 𝜑 nor𝜓 completely includes the other).

Figure 9 illustrates the latter three cases where 𝜑 is not equivalent to𝜓 . In the figure, each shape
represents the following:

• The outer solid ellipse. It represents the input space 𝑆 of the original buggy version 𝑃 .
• The inner dotted ellipse. It represents the sub-space of 𝑆 where preservation condition 𝜑

is not satisfied. Thus, 𝜑 is satisfied in the grey donut-shaped space.
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<latexit sha1_base64="tOespSt38bU+pnQM7KLsXFeNh1Y="></latexit>

Does the test fail due to
an unexpected exception?

Does the existing test
contain a general assertion?UE

EGA Is a reference imple-
mentation available?

RI CC

Yes No

Yes No

Yes No

Fig. 10. Decision tree about preservation condition patterns

• Three purple squares. They represent the three undesired output changes induced between
the original buggy version 𝑃 and the patched version 𝑃 ′. We use the notation 𝛿✗

𝑖
(where

1 ≤ 𝑖 ≤ 3) to refer to these three purple squares.
• The green square. It represents the desired output change induced between 𝑃 and 𝑃 ′. We
refer to this green square by the notation 𝛿✓4 .

We classify the patched version 𝑃 ′ as incorrect if a square of any color is detected in the grey
area. This leads to the following consequences:
• Under-approximated 𝜑 . This amounts to Figure 9(a). The patch is correctly classified as
incorrect if 𝛿✗

2 or 𝛿✗
3 is detected. However, if 𝛿✗

1 is detected, our method does not classify the
patch as incorrect.
• Over-approximated 𝜑 . This amounts to Figure 9(b). The patch is correctly classified as
incorrect if 𝛿✗

1 , 𝛿
✗
2 or 𝛿✗

3 is detected. The detection of 𝛿✓4 also results in the correct classification
of the patch as incorrect. However, this classification is only coincidentally correct.
• Wrong 𝜑 . This amounts to Figure 9(c). The patch is incorrectly classified as incorrect if 𝛿✓4 is
detected.

In summary, using an under-approximate preservation condition can lead to false negatives (i.e.,
an incorrect patch is not filtered out), while using an over-approximate preservation condition can
lead to false positives (i.e., a correct patch is filtered out).

5.2.2 Non-regression Error. Our approach can detect a regression error caused by a patch. If the
specified preservation condition is met, the output difference between the original buggy version
and the patched version is considered a regression error, leading to the classification of the patch
as incorrect. However, regression is not the only reason for a patch to be incorrect. A patch is also
incorrect if it does not change the output of the original version correctly. While our approach uses
the original version as the oracle when a given preservation condition is met, it does not check the
behavioral correctness when the preservation condition is not met, which may result in failing to
detect incorrect patches.

5.3 A Guideline to Write a Preservation Condition

The efficacy of our approach depends on the quality of the preservation condition. However, this
does not mean that developers need to write a complex preservation condition. On the contrary,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2023.



18 Elkhan Ismayilzada, Md Mazba Ur Rahman, Dongsun Kim, and Jooyong Yi

when we applied our method to automatically generated patches for real-world bugs (Section 6),
we found that a simple preservation condition is often sufficient (see Figure 16). In this section, we
discuss a possible guideline for writing a preservation condition.
A preservation condition can be viewed as an answer to the following question:What are the

conditions under which I can confidently trust the correctness of the output produced by the original

version? For example, if the bug at hand is about an exception unexpectedly thrown, the developer
would assume that the output of the original version is correct when that exception is not thrown.

In Section 4.3, we introduced four preservation condition patterns: UE, CC, EGA, and RI. All
these patterns provide a framework for answering the aforementioned question of when one can
trust the correctness of the output produced by the original version. If a developer wants to directly
specify the condition under which the bug at hand occurs, they can use the CC pattern. Note that
a preservation condition is the negation of the bug-triggering condition that has been identified.
However, while the CC pattern is most general, it often leads to a more complex preservation
condition compared to the other patterns (see the “Pattern Complexity” column of Table 10).
Therefore, we recommend that developers consider using the other patterns first if possible, as they
can be viewed as special cases of the CC pattern.

The UE pattern can be used when the bug is manifested by an unexpected exception, while the
EGA pattern can be used when the existing test already contains a general assertion. Similarly, the
RI pattern can be used when a reference implementation is available. To provide developers with
a concrete guideline on how to write a preservation condition, we offer a decision tree shown in
Figure 10.

5.4 Discussion about Automation

Given the necessity of domain-specific knowledge, it would not be easy to fully automate the test
generalization process. However, the process can be partly automated in a similar way to refactoring
incorporated into IDEs such as IntelliJ [15] and Visual Studio Code [35]. For example, when the user
observes an unexpected exception from a test, the automatic transformation of an existing test (e.g.,
Figure 2(c)) into a generalized version (e.g., Figure 5) can be performed in a straightforward manner.
For the remaining less common patterns, more user input is necessary, similar to some refactoring
patterns. Once the user chooses a generalization pattern to use and a necessary preservation
condition, the rest of the transformation can be performed automatically, after which the obtained
transformed test can be reviewed/edited by the user. Leaving IDE integration as future work, we
first investigate the efficacy of generalized tests in filtering out incorrect patches.

5.5 Preservation Conditions vs. Conventional Test Assertions

In Section 4.1, we mentioned that writing an oracle function𝜓 ( ®𝑥) is difficult even if a developer
has a perfect understanding of the program under testing. Recall that𝜓 ( ®𝑥) satisfies the following:

∀®𝑣 : 𝑇 (®𝑣) = 𝜓 (®𝑣)
where 𝑇 (®𝑣) represents the output of test 𝑇 when inputs ®𝑣 is assigned to parameters ®𝑥 of the
generalized test. Conventionally,𝜓 is written as a test assertion.

We also showed a concrete example (i.e., the motivating example shown in Section 3) for which
it is not clear how to write a conventional assertion, whereas the preservation condition for the
same example is very simple (i.e., true), as shown in Figure 5.
As another example, compare the two generalized tests shown in Figure 11; Figure 11(a) uses

conventional assertions, whereas Figure 11(b) uses a preservation condition. The generalized test
shown in Figure 11(a) expresses the following requirements of the gcd method [9]:
(1) Line 4–5: The invocation gcd(0, 0) is the only one which returns 0.
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1 public void testGcd(int i, int j) {
2 try {
3 long actual = MathUtils.gcd(i, j);
4 if (i == 0 && j == 0)
5 assertEquals(0, actual);
6 else if (i == j || j == 0)
7 assertEquals(Math.abs(i), actual);
8 else if (i == 0)
9 assertEquals(Math.abs(j), actual);
10 else {
11 // check if actual is the true gcd.
12 if (i % actual != 0 || j % actual != 0)
13 fail();
14 for (int k = actual + 1; k < Math.max(Math.abs(i), Math.abs(j)); k++)
15 if (i % k == 0 && j % k == 0)
16 fail();
17 }
18 } catch (ArithmeticException e) {
19 assertTrue((i == MIN_VALUE && j == Integer.MIN_VALUE) || (i == Integer.MIN_VALUE && j == 0)
20 || (i == 0 && j == Integer.MIN_VALUE));
21 }
22 }

(a) Generalized test for Math99 using the conventional test assertions

1 public void testGcd(int i, int j) {
2 // Generalized body:
3 try {
4 boolean complement = !( (i==Integer.MIN_VALUE && j==0) || (i==0 && j==Integer.MIN_VALUE) );
5 final long actual = MathUtils.gcd(i, j);
6 preserveIf(complement, () −> new Long[] { actual });
7 } catch (ArithmeticException e) {
8 preserveIf(!complement, () −> new String[] { e.toString() });
9 } catch (Exception e) {
10 failToPreserve();
11 }
12 }

(b) Generalized test for Math99 using a preservation condition (copied from Figure 6)

Fig. 11. Two kinds of generalized tests for Math99

(2) Lines 11–16: Computes the greatest common divisor of the absolute value of two numbers.
(3) lines 6–9: The result of gcd(x, x), gcd(0, x) and gcd(x, 0) is the absolute value of x, except for the

special cases above.
(4) lines 19–20: The invocations gcd(Integer.MIN_VALUE, Integer.MIN_VALUE), gcd(Integer.MIN_VALUE,

0) and gcd(0, Integer.MIN_VALUE) throw an ArithmeticException.

As shown with this example, when writing a conventional test, the test writer often needs
to understand how to partition the input space and write an oracle for each input partition. In
comparison, writing a preservation condition is simpler for the following two reasons.
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(a) When conventional test assertions are used.

Input space is divided into multiple partitions,

some of which may overlap, with each partition

having its own associated oracle in a form of an

assertion.

(b)When a preservation condition is used. Input

space is divided into two partitions and when

the preservation condition is satisfied (i.e., the

grey region), the output of the original version

is used as an oracle.

Fig. 12. Comparison of output spaces when conventional test assertions and a preservation condi-

tion are used

• First, as illustrated in Figure 12(b), the writer of a preservation condition needs to split the
input space into only two partitions, one where the behavior should be preserved after patch
and the other one where the behavior is allowed to be changed.
• There is no need to write an assertion to check behavioral preservation because the output
of the original version serves as the oracle.

Bug fixing typically involves making limited changes to the program behavior, and this makes it
suitable for describing when the program behavior should be preserved.

6 ASSESSMENT

We assess our specification-based patch-validation approach, Poracle, with the following research
questions.
• RQ1 (Classification Performance): How does our approach perform as compared to the
state-of-the-art approaches?
• RQ2 (Other Attributes): Apart from classification, we also evaluate our approach in terms
of other important attributes listed in the following:
– RQ2-1 (Consistency): Poracle uses a fuzzing technique, which may not produce the same
result across multiple runs. How does the randomness of fuzzing affect the consistency of
the results across multiple runs?

– RQ2-2 (Time efficiency): If a patch classification takes too long, it would impede APR
adoption by practitioners. How fast does our fuzzer detect incorrect patches?

– RQ2-3 (Ablation Study): Our patch-classification approach consists of two parts: (1)
generalizing a failing test with preservation conditions, and (2) conducting differential
fuzzing. To evaluate the impact of preservation conditions on classification performance, we
perform an ablation study by disabling preservation conditions. We compare the obtained
results with those obtained using the full approach.

– RQ2-4 (Application scope): APR research is gradually moving towards more complex
patches [53]. Is Poracle effective for more complex patches?

• RQ3 (Cost reduction): Our work is motivated by the high cost of manually validating a large
number of plausible patches. When our approach is applied to an APR system that returns a
ranked list of plausible patches, how much cost reduction can be achieved by filtering out
incorrect patches?
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Table 3. Dataset used in our experiment

Project Chart Lang Math Time Total
jGenprog 6+0 0+0 10+4 2+0 18+4
jKali 6+0 0+0 9+1 2+0 17+1
Kali-A 0+0 0+0 14+2 0+0 14+2

Nopol2015 6+0 5+2 14+1 1+0 26+3
Nopol2017 6+0 10+2 42+1 9+0 67+3

ACS 0+2 2+3 13+31 0+3 15+39
HDRepair 0+0 0+1 5+2 0+1 5+4
ARJA 0+0 0+1 16+6 0+0 16+7

AVATAR 0+0 4+0 14+4 1+2 19+6
SimFix 0+0 0+4 19+14 1+1 20+19

DynaMoth 0+0 1+2 17+2 1+0 19+4
FixMiner 0+0 1+0 17+7 1+2 19+9
TBar 0+0 5+2 17+10 1+2 23+14
KPar 0+0 4+1 15+7 1+2 20+10

RSRepair-A 0+0 0+1 17+4 0+0 17+5
Total (Generated) 24+2 32+19 250+98 20+1 326+132
Developer Patches 13 10 45 9 77

(# of Buggy Versions)

x+y denotes x patches labeled incorrect and y patches labeled
correct.

• RQ4 (Usability): Poracle uses a semi-automated approach, and thus, we study how the user
adopts our approach.

6.1 Experimental Settings

In this subsection, we describe the experimental settings we used for RQ1 (Classification Perfor-
mance) and RQ2 (Other Attributes). For the remaining two RQs, we conduct different experiments,
as will be described later.

Datasets. Our dataset contains in total 458 patches collected in the following way. We start with
the 139 patches used in PATCH-SIM [56], a de facto standard dataset [49, 51, 60] for PC techniques.
For a fair comparison, we run the first experiment with the PATCH-SIM dataset prepared by the
authors of PATCH-SIM. The PATCH-SIM dataset consists of the 139 patches generated from 77 buggy
versions in the Defects4J benchmark [19] and their correctness labels. For each of those 77 buggy
versions, we generalize its failing test by adding a preservation condition. In case more than one
failing test exists, we generalize only one failing test, simulating a bug-fixing scenario where a
developer typically has only one failing test initially. Note that most bugs (61 out of 77) in our
dataset have only one failing test.
We also run the second experiment with an extended dataset extracted from the large-scale

work of Liu et al. [27] where the authors collected patches generated from 16 APR systems and
labeled the correctness of each patch after manual investigation. A patch is labeled as correct when
it is identical to or semantically similar to the developer-written patch. For the criteria used to
determine semantic similarity, please refer to [27]. Labeling the correctness of a patch is a laborious
and error-prone task, and we utilize the aforementioned existing labeled dataset. Using the labels
prepared by other researchers also helps us mitigate the internal threat to validity caused by wrong
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or prejudiced labels. We collect all patches in [27] generated from the buggy versions covered by
our 77 generalized tests. This step adds 350 patches to our pool of patches. In the end, we obtain
458 patches after removing 31 duplicate patches that exist in both datasets. Table 3 summarizes
our dataset where the notation x+y denotes x patches labeled as incorrect and y patches labeled as
correct. Note that the extended dataset is the superset of the PATCH-SIM dataset. In the last column
of Table 3, the number of developer patches is identical to the number of buggy versions used in
our dataset, as our dataset contains one developer patch for each buggy version.
In summary, we use two datasets in our experiments, the PATCH-SIM dataset and the extended

dataset, both of which share the same 77 buggy versions.
Patch Classification Techniques. To assess the performance of Poracle, we compare the

results with the following four state-of-the-art patch classification techniques: PATCH-SIM [56],
Opad [59], and two machine-learning-based approaches [49, 60], which includes all existing PC
techniques targeted for Java programs mentioned in Section 2. Note that anti-patterns [47] and
Fix2Fit [11] are designed for C programs, and we exclude them from our experiment.

As mentioned in Section 2, we do not consider patch evaluation (PE) techniques [55, 58, 61, 65]
such as DiffTGen [55] in our evaluation. PE techniques assume the existence of ground-truth
patches and use them to check whether the patch under consideration is semantically equivalent
to its ground-truth patch. The target users of the PE techniques are APR researchers who want to
evaluate the quality of the generated patches. In comparison, the target users of the PC techniques
like ours are developers in the field; the PC techniques should work without ground-truth patches.
Note that while our benchmark contains ground-truth patches, our classification technique does
not use them.

Among the four PC techniques, Opad uses an evidence-based approach, whereas the remaining
three tools use score-based approaches. Opad classifies a patch as incorrect if a crash is detected
when a patched version is run under a fuzzer. PATCH-SIM computes the distance between the
executions of test 𝑡 before and after applying the patch 𝑝 (denoted with 𝑑𝑖𝑠𝑡𝑝 (𝑡)) and classifies the
patch as incorrect in the following two cases: (1) when the maximum distance observed in the
passing tests is larger than the predefined threshold (i.e., after patch, the execution of the passing
test substantially deviates from the original execution path), and (2) when the maximum distance
observed in the passing tests is larger than the average distance observed in the failing tests (i.e.,
after patch, the execution path deviates further from the passing tests than from the failing tests).
Otherwise, the patch is classified as correct. We will describe the two ML-based approaches shortly.
We run our fuzzer with a 10-min timeout, using our generalized tests as fuzz drivers. We run

PATCH-SIM with a 35-min timeout. PATCH-SIM is reported to take up to 30 minutes in its original
work [56]. PATCH-SIM internally uses Randoop [39] to prepare test cases to run, and we use a
3-min timeout for Randoop as used in the original experiment of PATCH-SIM. Opad is originally
implemented for C programs, and we simulate Opad in Java by classifying a patch incorrect if
a patched program throws an exception that is not observed in the original version; the same
approach was used in previous work [56]. For a fair comparison with Opad and Poracle, we use the
same fuzzer and timeout for both tools (i.e., 10 mins). All our experiments are performed on Intel
Xeon Gold CPU and 128GB memory.

We also compare Poracle with two ML-based approaches [49, 60]. In [49], patch classification
is performed by first transforming patch code into an embedding vector using an embedding
technique (such as BERT [8]), and then passing an obtained embedding vector to an ML classifier
(such as logistic regression), which is trained with the embedding vectors transformed from correct
and incorrect patches. In [49], the combination of BERT and logistic regression (denoted with
BERT-LR in this paper) is shown to perform best, and we use that in our comparison study. While
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Table 4. Comparison between Poracle, PATCH-SIM, and Opad

Patches Precision Recall F-measure
Project

Incorrect Correct Poracle PATCH
OPAD Poracle PATCH

OPAD Poracle PATCH
OPAD

-SIM -SIM -SIM
Chart 24 / 24 2 / 2 100% / 100% 100% / 100% 67% / 67% 71% / 71% 58% / 58% 8% / 8% 83% / 83% 73% / 73% 14% / 14%
Lang 11 / 32 4 / 19 100% / 100% 100% / 65% 50% / 50% 82% / 59% 54%/ 34% 9% / 3% 90% / 74% 70% / 45% 15% / 6%
Math 64 / 250 19 / 98 100% / 99% 100% / 96% 81% / 68% 62% / 59% 52% / 26% 27% / 16% 77% / 74% 68% / 41% 41% / 26%
Time 13 / 20 2 / 13 100% / 100% 100% / 100% 100% / 100% 77% / 63% 69% / 50% 54% / 40% 87% / 77% 81% / 67% 70% / 57%
Total 112 / 326 27 / 132 100% / 99% 100% / 92% 82% / 71% 70% / 60% 55% / 31% 24% / 16% 82% / 75% 71% / 46% 37% / 26%

For a fair comparison, we use two different datasets: (1) 139 (=112+27) patches used in the study of PATCH-SIM [56] and (2) the extended dataset
shown in Table 3. In notation 𝑥/𝑦, 𝑥 and 𝑦 represent the data for the first dataset and the extended dataset, respectively. In each row, the best
results are highlighted.

Table 5. Comparison between Poracle and BERT-LR

Project
Patches Precision Recall F-measure

Incorrect Correct Poracle BERT-LR Poracle BERT-LR Poracle BERT-LR
Chart 24 / 24 2 / 2 100% / 100% 100% / 100% 71% / 71% 67% / 67% 83% / 83% 80% / 80%
Lang 11 / 24 4 / 8 100% / 100% 100% / 86% 82% /58% 10% / 25% 90% / 73% 18% / 39%
Math 64 / 167 19 / 42 100% / 99% 100% / 99% 66% / 63% 36% / 44% 80% / 77% 53% / 61%
Time 13 / 16 2 / 3 100% / 100% 100% / 100% 77% / 69% 23% / 25% 87% / 82% 37% / 40%
Total 112 / 231 27 / 55 100% / 99% 100% / 98% 70% / 64% 38% / 43% 82% / 78% 55% / 60%

For a fair comparison, we use two different datasets: (1) 139 (=112+27) patches used in the study of PATCH-SIM [56] (the same as in
Table 4) and (2) 286 (=231+55) patches, which are the intersection between the dataset available in [49] and our extended dataset
(Table 3).

the tool used in [49] is not publicly available, the embedding vectors for the patches in their dataset
and the classification script is available, from which we obtain results of BERT-LR for 286 patches
existing in common between our dataset and theirs.

Another ML-based tool, ODS [60], also trains a classification model using the XGBoost library [5].
Unlike [49], ODS uses hand-crafted code features. For example, one of the features determines
whether a patch uses a local variable or a global variable. Another example of the feature determines
whether a patch is to add a missing null check. We compare Poracle with ODS, using 332 patches
existing in common between our dataset and theirs. 9

Evaluation Metrics. We use standard metrics, precision, recall, and F-measure defined as
follows.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(the number of rejected incorrect patches)
(the total number of rejected patches)

𝑅𝑒𝑐𝑎𝑙𝑙 =
(the number of rejected incorrect patches)
(the total number of incorrect patches)

𝐹 -𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2

1
𝑅𝑒𝑐𝑎𝑙𝑙

+ 1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

6.2 Experimental Results

6.2.1 RQ1: Performance. Table 4 compares the performance of Poracle with PATCH-SIM and Opad.
In the table, the “Patches" column shows the number of incorrect/correct patches in our dataset.
We use notation 𝑥/𝑦 where 𝑥 and 𝑦 represent the data for the PATCH-SIM dataset and the extended
9While the ODS replication package is available (i.e., their benchmark results can be reproduced), the ODS “tool” was not
available (i.e., a new benchmark cannot be applied) at the time of conducting the experiments.
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Table 6. Comparison between Poracle and ODS

Project
Patches Precision Recall F-measure

Incorrect Correct Poracle ODS Poracle ODS Poracle ODS
Chart 23 / 23 2 / 2 100% / 100% 100% / 100% 70% / 70% 57% / 57% 82% / 82% 73% / 73%
Lang 10 / 26 3 / 10 100% / 100% 100% / 78% 80% / 58% 90% / 96% 89% / 73% 94% / 86%
Math 60 / 177 19 / 64 100% / 99% 92% / 90% 68% / 61% 55% / 84% 81% / 75% 69% / 87%
Time 13 / 16 2 / 7 100% / 100% 92% / 70% 77% / 69% 85% / 88% 87% / 82% 88% / 78%
Total 106 / 242 26 / 83 100% / 99% 94% / 88% 71% / 62% 62% / 83% 83% / 76% 74% / 85%

For a fair comparison, we use two different datasets: (1) 132 (=106+26) patches used in the study of PATCH-SIM [56]—7
patches are excluded since ODS results are missing for those 7 patches (confirmed by the ODS authors)—and (2) 325 (=242+83)
patches, which are the intersection between the dataset available in [60] and our extended dataset (Table 3).

dataset (Table 3), respectively. This distinction is made to show the PATCH-SIM results reported
by its authors verbatim [56] for the PATCH-SIM dataset. We use the same notational convention
for “Precision", “Recall", and “F-measure” columns to distinguish the results from the two datasets;
in notation 𝑥/𝑦, 𝑥 and 𝑦 represent the result for the PATCH-SIM dataset and the extended dataset,
respectively. In each row of the table, the best results are highlighted.

Poracle significantly outperforms PATCH-SIM and Opad across all four projects. The recall of
Poracle reaches 60% (197/326), which is about 2 times and 4 times higher than PATCH-SIM (31%)
and Opad (16%), respectively. Also, the precision of Poracle reaches 99%10 (197/(197 + 2)), which is
higher than that of PATCH-SIM (92%) and Opad (71%). Opad, for which we use the same fuzzer used
in Poracle, shows the lowest performance, indicating the importance of using specification. The
F-measure is also highest in Poracle across all four subjects.

Table 5 compares the performance of Poracle with BERT-LR [49]. We use the same notation 𝑥/𝑦
as before. Our result shows that Poracle outperforms BERT-LR as well. The recall of Poracle (64%)
is about 1.5 times higher than that of BERT-LR (43%), while the precision is high both in Poracle
(99%) and BERT-LR (98%). As a result, the F-measure is higher in Poracle than in BERT-LR.

Lastly, Table 6 compares Poracle and ODS. Poracle shows a higher recall than ODS in the PATCH-
SIM dataset, and the opposite result is observed from the other dataset. In terms of precision,
Poracle maintains high precision (100% and 99%), whereas ODS shows a lower precision (94% and
88%) in the two datasets. Overall, ODS rejects patches more aggressively, whether them being
correct or incorrect. Figure 13 shows such a tendency clearly. As shown in the left diagram, ODS
rejects 52 more incorrect patches correctly than Poracle. However, the right diagram 11 shows
the strength of Poracle over ODS, accepting 55 more correct patches. Our mixed result, (which is
also reflected in the F-measure), poses the classic tradeoff between sensitivity and specificity of
classification. However, considering the scarcity of correct patches [29], the cost of errorneously
rejecting a correct patch is very high, and our approach is advantageous over ODS in that regard.
In fact, rejecting a correct patch should be the last thing a patch validation tool does considering
the objective of APR—i.e., finding out a correct patch.

RQ1: Our approach Poracle correctly rejects significantly more number of incorrect patches than

PATCH-SIM (x1.9), Opad (x3.9), and BERT-LR (x1.5). Also, Poracle accepts almost all correct patches

showing 99% precision, in contrast to ODS that rejects the largest number of correct patches among 5

considered approaches.

10Two correct patches are rejected due to that the imperfect preservation conditions we used. Instead of engineering our
preservation conditions, we used the preservation conditions prepared based on our understanding on the bugs.

11To compensate for a small number of correct patches, we also include developer patches.
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(a) Correctly rejected patches (b) Correctly accepted patches

Fig. 13. Comparison between Poracle and ODS. ODS tends to reject patches aggressively (see (a)),

even rejecting many correct patches (see (b)).

Table 7. Consistency of patch correctness classification

Project Rejected Consistently Accepted Consistently
Poracle PATCH-SIM Poracle PATCH-SIM

Chart 17 / 17 11 / 14 9 / 9 7 / 10
Lang 9 / 9 5 / 5 6 / 6 5 / 7
Math 42 / 42 19 / 25 41 / 41 44 / 57
Time 10 / 10 0 / 1 5 / 5 7 / 7
Total 78 / 78 35 / 45 61 / 61 63 / 81

Notation X / Y represents that Y patches are rejected/accepted at least once, and X patches
are rejected/accepted in all 10 trials.

6.2.2 RQ2-1: Consistency. Given that Poracle uses a fuzzer, different results may be obtained at
each fuzzing instance. PATCH-SIM shares the same issue due to its use of random test generation via
Randoop [39]. To assess this concern, we run Poracle and PATCH-SIM 10 times for the PATCH-SIM
dataset.12 We use the same timeout as in the previous experiments (10 mins for Poracle and 35
mins for PATCH-SIM).

Table 7 shows the results. The “Rejected Consistently” column shows how consistently a patch
is rejected, using notation X / Y where Y represents the number of patches that are rejected at least
once out of 10 trials, while X represents the number of patches that are rejected in all 10 trials. The
“Accepted Consistently” column similarly uses the X / Y notation. Note that PATCH-SIM—which
uses a score-based approach—neither accepts nor rejects a patch when the timeout (35 mins) is
reached or the tool crashes. We exclude those cases from the table. Our results show that Poracle
returns consistent results across all 10 trials, in contrast to PATCH-SIM.

One possible explanation for our result is that an input causing a behavioral difference between
patched and pre-patched versions is often nearby the original input. If that is the case, a patch is
likely to be rejected in a short amount of time during the fuzzing process.

RQ2-1: Poracle showed consistent results in our experiments even though it utilizes a fuzzer.

6.2.3 RQ2-2: Time Efficiency of Fuzzing. We measure the time it takes for our fuzzer to reject a
patch once started while the manual cost of writing a preservation condition is assessed with the
user study described in Section 6.4.

12We use a smaller dataset to accommodate extended experimental time.
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Fig. 14. Distribution of the execution time

The box-plot of Figure 14 shows the distribution of running time of Poracle and PATCH-SIM
when both tools are run 10 times. The experiment is conducted on our extended dataset.13 We
compare Poracle with PATCH-SIM because both approaches perform dynamic analysis by running
the pre-patched and patched versions. We used the same setting of PATCH-SIM as described in
Section 6.1. To avoid different classification results for each session, we used in all 10 sessions the
same random tests Randoop generated. Recall that PATCH-SIM uses Randoop to prepare test cases.
We measured the running time PATCH-SIM spent for patch classification and did not include the
time taken to generate tests.

Meanwhile, comparison with Opad is not considered, since we simulate Opad using our custom
fuzzer used in Poracle. The two ML-based approaches are not considered either. They do not
involve running the program and finish almost instantly.
In the plot, X and Y axes show the subject projects and the duration (in sec), respectively. The

overall average running time of Poracle is 32.57s, which is about 8 times faster than PATCH-SIM
(257.26s). This result again suggests that many incorrect patches can be easily rejected via fuzzing.
This is in contrast to the earlier work using fuzzing [11, 59] where fuzzing is conducted for several
hours. The key difference is that our approach can be applied at both the unit level and the system
level, whereas in the earlier studies, fuzzing was conducted only at the system level. Note that the
majority of the Defects4J tests are unit tests. We also note that the results shown in Figure 14 do
not include the time spent writing preservation conditions. In Section 6.4, we show our user study
results, including time information.

RQ2-2: The differential fuzzing module of Poracle detected incorrect patches about 8 times faster

than PATCH-SIM, the state-of-the-art dynamic patch classification technique.

6.2.4 RQ2-3: Ablation Study on Preservation Conditions. To see the efficacy of preservation condi-
tions, we conduct an ablation study by removing preservation conditions from our generalized tests.
With these modified tests, all output differences are considered as evidence for patch incorrectness.
Table 8 shows our results where the “Poracle” and “w/o P.C” column represent the results with and
without preservation conditions, respectively. While about the same number of incorrect patches
are rejected correctly (197 vs 196), a larger number of correct patches are rejected incorrectly when

preservation conditions are removed (2 vs 63).
Not using a preservation condition can be simulated by using the preservation condition, “true”.

As described in Section 5.2.1, if an over-approximate preservation condition is used, it may result in

13Timeout results of PATCH-SIM are excluded from the plot.
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Table 8. Comparison between (1) Poracle and (2) Poraclewithout preservation conditions (column

“w/o P.C”)

Patches Rejected Correctly Rejected Incorrectly Rejected Coincidentally
Project

Incorrect Correct Poracle w/o Poracle w/o Poracle w/o
P.C P.C P.C

Chart 24 / 24 2 / 2 17 / 17 19 / 19 0 / 0 1 / 1 0 / 0 3 / 3
Lang 11 / 32 4 / 19 9 / 19 7 / 14 0 / 0 3 / 16 0 / 0 2 / 11
Math 64 / 250 19 / 98 42 / 148 45 / 148 0 / 2 7 / 46 0 / 0 12 / 58
Time 13 / 20 2 / 13 10 / 13 10 / 15 0 / 0 0 / 0 0 / 0 1 / 1
Total 112 / 326 27 / 132 78 / 197 81 / 196 0 / 2 10 / 63 0 / 0 18 / 73

In notation 𝑥/𝑦, 𝑥 and 𝑦 represent the data for the first dataset and the data for the extended dataset, respectively.

Table 9. Results for developer patches

Project Patches
Errorneously Rejected

Poracle Opad PATCH-SIM ODS BERT-LR
Chart 13 0 1 3 3 7
Lang 10 0 2 3 4 3
Math 45 1 6 8 17 14
Time 9 0 0 2 4 6
Total 77 1 9 16 28 30

In each row, a better performing tool is highlighted.

the rejection of a correct patch or the coincidental rejection of an incorrect patch based on wrong
evidence. The latter happens when the observed output difference is not due to a regression error.

To check how often an incorrect patch is only coincidentally rejected, we perform the following.
Given input 𝐼 that causes an output difference between a pre-patched version 𝑃 and its patched
version 𝑃 ′, we compute the output of the correct version 𝑃𝑐 available in the benchmark. If 𝑃𝑐 and
𝑃 ′ produce the same output, we consider that the patch was coincidentally rejected because the
observed output difference between 𝑃 and 𝑃 ′ does not indicate a regression error. In our ablation
study, we found that 73 patches are only coincidentally rejected. In comparison, when preservation
conditions are used, we observe no coincidental rejection.

RQ2-3: We summarize our findings as follows:

• In a large portion of the patches (72%)—(196+63+73)/(326+132)a—output difference is observed
between patched and pre-patched versions, showing the efficacy of using a parameterized test

with fuzzing.

• However, only 60% of these inputs—196/(196 + 63 + 73)—accurately evidence the incorrectness of

the patches.

• By using preservation conditions, those wrong evidences for rejection are filtered out.

• These results suggest that many incorrect patches can be correctly filtered out via the combination
of fuzzing and preservation conditions.

aThis ratio is computed with the results from the extended dataset. Similar results are obtained from the PATCH-SIM
dataset. Recall that the extended dataset is the superset of the PATCH-SIM dataset.

6.2.5 RQ2-4: Application Scope. To assess the performance with wider ranges of patches, we use
the 77 developer-written correct patches for the 77 buggy versions in our dataset which tend to be
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longer than the tool-generated patches; the tool-generated patches in our dataset use on average
2.81 lines and 14.15 words, whereas the developer patches use on average 5.83 lines and 29.29
words. Table 9 shows the result. Poracle shows almost perfect performance, rejecting only one
correct patch for the Math-71 bug in Defects4J.14 As described in Section 5.2.1, our method can
reject a correct patch if the preservation condition is over-approximate. For the Math-71 bug, we
used the assertion used in the original test as a preservation condition, which turns out to be
over-approximate.

Meanwhile, the other four tools incorrectly reject a higher number of correct patches. The result
of the two ML-based techniques (ODS and BERT-LR) are particularly alarming—about 36% and 39%
of the patches are errorneously rejected in ODS and BERT-LR, respectively.

RQ2-4: Poracle almost always does not reject human-written correct patches, which indicates that

the tool is not overfitting to auto-generated patches. In comparison, the existing approaches often

misjudge human-written patches and reject them erroneously.

6.3 RQ3: Assessing Cost Reduction

As mentioned in Section 1, recent APR systems [4, 11, 12, 53] return a list of plausible patches.
Sifting out a correct patch from a large number of incorrect patches is a costly process. Patch
classification (PC) techniques such as Poracle can help reduce costs by filtering out incorrect
patches from the list. We conduct a separate experiment to assess the cost reduction achieved by
Poracle.

6.3.1 Experimental Settings. To estimate cost reduction with an actual APR system, we collect
patches from JAID [4], a state-of-the-art APR tool that returns a ranked list of patches. We apply JAID
to the 77 Defects4J buggy versions for which we have generalized tests and obtain the ranked lists
of plausible patches from 28 versions. For the remaining versions, JAID fails to generate plausible
patches.

In this experiment, we measure how many patches should be reviewed before and after applying
Poracle (with 10-min timeout), assuming that patches are reviewed in the order of their rankings.
Before applying Poracle, the number of patches to review is identical to the ranking of the correct
patch, if one exists in the list. If there is no correct patch in the list, we report the total number
of patches in the list. Please note that to determine whether a patch is correct or not, we use the
correctness labels provided by the authors of JAID.15
Once Poracle is applied, a correct patch that was originally ranked at the 𝑛-th position is re-

ranked to the (𝑛−𝑚)-th position if (1)𝑚 incorrect patches that were ranked higher than the correct
patch are filtered out by Poracle, and (2) the correct patch is not filtered out. If the ranked list does
not contain a correct patch, we report the number of patches that remain after applying Poracle,
since the users, without knowing whether there exists a correct patch in the list, will need to review
the remaining patches.

6.3.2 Experimental Results. Figure 15(a) shows our results. In the figure, each data point denotes a
bug in the Defects4J benchmark [19]. The X and Y axes represent the number of patches to review
before and after applying Poracle, respectively, until either the correct patch is found or all patches
are reviewed and no correct patch is found. Figure 15(b) shows a closer look at the results for the
patches whose original X-values are below 200. Note that all data points are located under the red
diagonal line, indicating that correct patches are detected either earlier or at the same time as they

14ODS also rejects the same correct patch.
15https://bitbucket.org/maxpei/jaid/wiki/Home
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Fig. 15. The number of patches to review before (X-axis) and after (Y-axis) applying Poracle
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Fig. 16. The violin plot showing the complexities of our preservation conditions

would be without employing our method. In most cases (20 out of 28), the number of patches to
review decreases (i.e., data points are close to the X-axis). For example, in Chart9, a correct patch
originally ranked at 45th is ranked up to 18th after applying Poracle. Also, in Math28, all 1220
incorrect patches in the list are filtered out. Overall, our approach reduces the number of patches
to review by 108 patches per version, resulting in a reduction ratio of 39.83%.
We also processed the same JAID patches with PATCH-SIM using the setting described in Sec-

tion 6.1. In our experiment, PATCH-SIM filters out incorrect patches more aggressively than Poracle,
resulting in a reduction ratio of 70.6%. F-measure is also higher with PATCH-SIM at 91% compared
to 79% with Poracle. It is important to note, however, that PATCH-SIM also filters out 12 correct
patches out of 14 generated by JAID, whereas Poracle retains all correct patches. Our results suggest
that by using Poracle, developers can reduce the number of patches to review while retaining all
correct patches, which is difficult to be achieved with PATCH-SIM or other score-based approaches.

RQ3: Poracle reduces the number of patches to review by 39.83% per version while retaining all

correct patches.
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Fig. 17. The number of years our participants had been programming

6.4 RQ4: Assessing Usability

Our experience suggests that it is straightforward to generalize existing failing tests with preserva-
tion conditions. Figure 16 shows the complexities of the 77 preservation conditions we wrote.16
We estimate the complexities of the preservation conditions by counting the number of operators
(e.g.,>, >=, && and | |) used in a preservation condition. As shown in Figure 16, the preservation
conditions we wrote are quite simple, using, on average, only 1.58 operators. To assess the usability
of our approach more objectively, we conduct a user study.

6.4.1 User Study Setup. We conducted a user study with 66 junior/senior undergraduate students
in a third-year course (Software Engineering) at Ulsan National Institute of Science and Technology
in 2022. Figure 17 displays the number of years our participants had been programming. To motivate
the participants, grade compensation was provided.
To conduct the user study, we prepared four questions, each consisting of a buggy version, a

failing test, and 10 patches. We extracted all buggy versions from the Defects4J benchmark [19];
see the “Bug ID” column of Table 10. We used the following criteria to select the buggy versions
and the patches:
• Each buggy version requires a different pattern of preservation conditions; see the “Pattern”
column of Table 10.
• Our method is designed for developers having domain-specific knowledge of the buggy
version. To meet this assumption, we selected three buggy versions extracted from the
Apache Commons Math project17 and one buggy version extracted from Apache Commons
Lang project 18. These two projects implement common operations for math and string
manipulation with which the participants are likely to be familiar.
• All patches should pass the failing test.
• For each version, we used the ground-truth patch available in the Defects4J benchmark as a
correct patch.
• For each version, we randomly selected nine incorrect patches from those Poracle successfully
filtered out in our experiments presented in Section 6.2.

In Table 10, the “Complexity” column shows the complexities of the ground-truth preservation
conditions for each question. Compare them with the “Pattern Complexity” column showing
the mean complexity of the preservation conditions for each pattern; we collect all preservation
conditions for each pattern and then compute the mean complexity of them.

16We trim the tails of the violin plots that are beyond the range of the data. Note that a violin plot is often stretched
(smoothed) out beyond the range of the data.

17https://commons.apache.org/proper/commons-math/
18https://commons.apache.org/proper/commons-lang/
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Table 10. Four questions used in the user study.

Question Group Bug ID Complexity Pattern Pattern
Group 1 Group 2 Complexity

Q1 Poracle Manual Math-73 10 CC (Complementary Cases) 2.75
Q2 Poracle Manual Math-105 1 EGA (Existing Assertion) 2.24
Q3 Manual Poracle Math-28 0 UE (Unexpected Exception) 0
Q4 Manual Poracle Lang-58 1 RI (Reference Implementation) 2.08

We compare the user experience of patch assessment between the following two patch assessment
methods:
(1) Manual patch assessment: The user identifies a correct patch out of 10 given patches consisting

of one correct patch and nine incorrect patches. Poracle is not used in this case.
(2) Semi-automatic patch assessment using Poracle: The user extends a failing test with a

preservation condition and runs Poracle to identify a correct patch out of the same 10 patches
as used in manual patch assessment. To make sure the participants do not manually find a
correct patch, we instructed them to submit the result they obtained using Poracle.

We do not include fully-automated patch classification techniques mentioned in Section 6.2,
because those methods do not change the manual patch assessment process — i.e., given a list of
patches ranked top 10, the developer looks for a correct patch. In both assessment methods (manual
and ours), we provided the participants with the necessary domain knowledge to write correct
answers, such as API documents. We compare the correct answer ratio between the experimental
group (in which Poracle is used) and the control group (in which manual assessment is used).
Since our user-study participants are not familiar with APR and preservation conditions, we

provided a single session of a 75-minute tutorial on APR, preservation conditions, and how to use
Poracle. We did not provide the guideline on how to write preservation conditions described in
Section 5.3. We will discuss how this affects the results in Section 6.4.3.
We provided the user with a docker container where Poracle is installed. The container also

contains thematerials for the four questions, where each question consists of the followingmaterials.
• Source code for the buggy version
• A failing test for the buggy version
• Editors including Vim, Emacs, and Nano
• A script to run the failing test
• 10 patch candidates, all of which pass the given failing test
• A script to run Poracle

Only the last one is used exclusively in the experimental group. The remaining materials are used
in both groups.

We randomly divided the 66 participants into two groups and assigned each group four questions—
two formanual patch assessment and two for semi-automatic patch assessment. The “Group” column
of Table 10 shows how we distribute the four questions into the two groups. For each question,
we prepared two versions — one for the control group and the other one for the experimental
group. Both question versions are extracted from the same bug of Defects4J [19], as shown in
the “Bug ID” column. For each question, we distributed its two versions into the two groups. For
example, for Q1, we prepared two versions of the question extracted Math-73 and assigned the
semi-automatic assessment version to the first group and the manual assessment version to the
second group. This study design is to prevent the result of one version of a question 𝑄 (say, the
semi-automatic assessment version of 𝑄) from being affected by another version of the same
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Fig. 18. Correct answer ratios
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Fig. 19. Manual time cost
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Fig. 20. Experiences about the two patch assessment methods

question (the manual assessment version of 𝑄). The four questions we used in the study cover all
four patterns of preservation invariants described in Section 4.3, as shown in the “Pattern” column.

6.4.2 User Study Results. As shown in Figure 18(a), the correct answer ratio is higher in the
experimental group where Poracle is used than in the control group where patches are manually
assessed. When evaluating the participants’ answers, we gave either 1 point (if an answer is correct)
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or 0 point (if an answer is wrong). While the result suggests that using Poracle can help the users
find correct patches by filtering out incorrect ones, the overall correctness ratios are not very high.
However, Figure 18(b) and 18(c) provide different perspectives. After the semester was over, we
split the 66 students into two groups, the top 50% students and the last 50% students, based on their
total scores accumulated throughout the semester (e.g., exam scores and assignment points), except
for the compensation points assigned for the user study. The correctness ratios are clearly higher in
the top-50% group than in the last-50% group, suggesting that high-performing participants make
better use of Poracle. In addition, the score differences between the two methods (Poracle and
manual) are statistically significant (p-value < 0.05; we have conducted the Mann-Whitney rank
test [30]).

Meanwhile, the box plots in Figure 19 compare the manual time cost involved in each method —
i.e., the time taken to write preservation conditions (Poracle) and the time to review 10 patches
(Manual). When considering all students, the manual time cost of writing a preservation condition
is higher than that of the manual method (see Figure 19(a)). However, if we consider only those who
submitted correct answers (they better represent the groups who used each method effectively),
the gap between the two methods is only marginal as shown in Figure 19(b); the median times
between the two methods are almost the same and there is no statistically significant difference
between the two methods (p-value < 0.05 from the Mann-Whitney rank test).
Apart from the correctness ratio, we also asked the participants about their experiences in

using the two patch assessment methods they used. As shown in Figure 20(a), more participants
expressed a positive experience with using Poracle than with the manual method (48% vs. 35%).
The high-performing group responded similarly (58% vs 41%), as shown in Figure 20(b). In both
figures, the response differences between the two methods (Poracle and manual) are statistically
significant (p-value < 0.05 from the Mann-Whitney rank test).
Lastly, we asked the participants to choose a preferred patch assessment method between the

two methods they used. Most participants chose the semi-automatic assessment method using
Poracle over the manual one, as shown in Figure 21.

6.4.3 Discussion about the User Study Results. We believe that our method is cost-effective for
several reasons. Once a preservation condition is written, it can be reused to filter out any number
of incorrect patches fixing the same bug. As shown in Section 6.3, the one-time cost of writing
preservation condition can be compensated by filtering out tens and hundreds of incorrect patches.
In addition, when a regression error occurs in the future, preservation conditions can be reused to
filter out incorrect patches for that error.
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Table 11. Distributions of correct, over-approximate, under-approximate, and wrong p.c. (preserva-

tion conditions) written by the participants.

Question Ground-Truth Correct p.c. Over-approximate p.c. Under-approximate p.c. Wrong p.c.
Pattern

Q1 CC 21 2 5 5
Q2 EGA 25 0 1 7
Q3 UE 18 0 9 6
Q4 RI 17 1 7 8

Table 12. Frequency of (in)correct patches submitted by the participants for each category of p.c.

(preservation condition) described in Table 11.

Question Ground-Truth Correct p.c. Over-approximate p.c. Under-approximate p.c. Wrong p.c.
Pattern Correct Correct Incorrect Correct Incorrect Correct Incorrect

Q1 CC 21 0 2 0 5 0 5
Q2 EGA 25 0 0 0 1 0 7
Q3 UE 18 0 0 0 9 0 6
Q4 RI 17 0 1 0 7 0 8

Table 13. Distributions of participants’ incorrect answers and incorrect patterns.

Question Ground-Truth Incorrect Incorrect
Pattern Answer Pattern

Q1 CC 12 7
Q2 EGA 8 7
Q3 UE 15 15
Q4 RI 16 11

Our approach is intended for developers who want more control over the patch classification
process. Indeed, our user study results suggest that our approach is more likely to be useful for
advanced developers. Top-50% students used our approach more effectively, and their opinions on
our approach were more positive than those of bottom-50% students.
Similar to other specification-based approaches, the effectiveness of our approach depends on

the quality of the preservation conditions the users wrote. Table 11 displays the distributions of
correct, over-approximate, under-approximate, and wrong preservation conditions written by the
participants. Please refer to Section 5.2.1 for the definitions of over-approximate, under-approximate,
and wrong preservation conditions.19 We compared the preservation conditions written by the
participantswith the ground-truth preservation conditions used in our tool experiments (Section 6.2).
As demonstrated in Table 12, participants in our study submitted incorrect answers (i.e., failed to
identify the correct patch) when they used incorrect (i.e., over-approximate, under-approximate or
wrong) preservation conditions. When an under-approximate preservation condition is used, 10
participants identified multiple patches, including the ground-truth patch, as correct, instead of
selecting just one. This can happen because an under-approximate preservation condition may fail
to filter out all incorrect patches (see Figure 9(a)).

19Uncompilable conditions are considered as “wrong”.
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In Section 5.3, we discussed the guidelines for writing preservation conditions. To assess the
effectiveness of the guideline had we provided it, we collected the participants’ preservation
conditions that led to incorrect answers, and analyzed how often they used the same preservation
condition patterns as those used in the ground-truth ones. As shown in Table 13, our participants
often used incorrect patterns different from those used in the ground-truth preservation conditions
when they failed to identify the correct patch. We hypothesize that providing the guidelines could
help developers in writing correct preservation conditions, which should be investigated in future
work.

RQ4: Our user-study participants were more successful in finding correct patches when using Poracle

as compared to when they did not use it. And a larger number of participants reported a positive

experience with using Poracle compared to the manual approach.

7 THREATS TO VALIDITY

External Validity: Our findings might not be valid for patches that are not in our dataset. Also,
the distribution of correct and incorrect patches may be different depending on an APR tool used to
generate the patches. To mitigate this threat, we conducted experiments with an extended dataset
in addition to the PATCH-SIM dataset and obtained similar results from both datasets.
For the 77 buggy versions in our dataset, we could successfully write preservation conditions

using the four patterns (i.e., UE, CC, EGA and RI). However, there could be cases that cannot be
covered with these four patterns and we do not claim that they are exhaustive. Instead, we would
like to point out that our approach is designed to be generic. Developers can apply our approach as
long as they can express preservation conditions using the preserveIf and failToPreserve methods we
provide.
Regarding the user study, our findings may not be generalized to all programmers. However,

we note that our participants are junior/senior students majoring in computer science who can
be considered entry-level developers. When writing a preservation condition, different levels of
familiarity of participants with the subject code may confound the result. To mitigate this threat,
the code in our survey questions deals with mathematical computation (Math-73, Math-105, and
Math-28) or string manipulation (Lang-58) to which our participants are likely to have similar
levels of understanding.
Internal Validity: To decide whether the classification result is correct, we use the labels prepared
manually by other researchers in previous works [27, 56], which is subject to bias. Also, generalized
tests prepared by us are subject to bias, though the existing failing tests clearly reveal bug fixing
intention for most bugs in our dataset. To mitigate the threat posed by using manual labels and
specifications, we validate all rejection decisions with ground-truth versions available in the
Defects4J benchmark. Specifically, given an obtained input 𝐼 that causes a behavioral difference
between patched and pre-patched versions, we run the correct version with the same input 𝐼 . If
the correct version and the patched version produce different outputs for 𝐼 , the patch is indeed
incorrect. Through this process, we identified four misclassified patches and used rectified labels in
the experiments.

In the user study, we provided the participants with 10 patches for each buggy version. However,
the number of patches may vary depending on the APR tool used to generate the patches and this
may affect the result of the user study. In this work, we treat the number of patches as a constant
and do not consider the effect of the number of patches on the result.

Our user study was conducted assuming the developers have domain-specific knowledge about
their software project. To fulfill this assumption, we provided the study participants with materials
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such as API documents from which they can extract domain-specific knowledge, as described in
Section 6.4. However, our study was not conducted with the original developers of the subject
software projects, and whether developers have sufficient knowledge to write a preservation
condition should be investigated in a separate study. Nevertheless, our experience with writing
preservation conditions suggests that the developers are likely to have sufficient domain-specific
knowledge. Although we are not the original developers, we could write preservation conditions
based on API documents and bug reports.

In the user study, our participants used traditional editors such as Vim, and we did not provide
an IDE (Integrated Development Environment). Using an IDE could have affected the participants’
performance in both experimental and control groups since an IDE provides various useful features
such as code completion and a debugger. However, we chose not to provide an IDE because our
participants are more accustomed to using Vim than an IDE, since Vim is the primary editor used
in most computer science courses they took.

8 CONCLUSION AND FUTUREWORK

In this work, we have explored the possibility of using a semi-automated approach for APR to
mitigate its overfitting problem. Essentially, our approach automatically generates hold-out tests
based on a snippet of user information (i.e., a preservation condition). Our positive results suggest
that there is room for research on semi-automated approaches for APR. Given that the current APR
systems often generate incorrect patches and currently there is no automatic system to check the
patch correctness reliably (current automatic patch classification techniques often make a wrong
decision as shown in Section 6.2), semi-automatic approaches like ours can be a practical solution
to the overfitting problem of APR.
One potential future research direction is to find out an optimal way to interact with the user.

An ideal method will cause the minimum cognitive load to the user. Given that most APR systems
use tests written by the developers, utilizing those tests as done in this study can be one of the
promising directions. While our user-study results are supportive of our semi-automatic approach,
a more extensive user study is needed to obtain a deeper understanding of how developers perceive
our approach, which we leave as future work.
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